Урок по химии на тему "Сложные эфиры, жиры,мыла". Сложные эфиры их значение в природе


Изучение сложных эфиров - Сборник сочинений

Т. Н. Игнатова

Школа № 331 Санкт-Петербург

Изучение сложных эфиров

Цели урока: рассмотреть особенности строения, свойства и получение сложных эфиров как продуктов взаимодействия карбоновых кислот и спиртов, их многообразие и значение в природе, применение сложных эфиров; на примере эфиров показать взаимосвязь между органическими соединениями; формировать практические навыки проведения химического эксперимента.

Оборудование: уксусная кислота, этиловый спирт, этиловый эфир уксусной кислоты, спиртовка, химическая посуда, пищевые ароматизирующие добавки, фрукты и цветы, пробники духов, телевизор, видеомагнитофон, магнитофон.

Ход урока: Звучит «Вальс цветов» П. И. Чайковского.

Демонстрируется видеофильм с кадрами весны, пробуждения природы.

Учитель: Ребята! Под чарующие звуки этой мелодии представьте себе розу. Можно долго любоваться её красотой, вслушиваться в дыхание её лепестков и листьев, но впечатление будет неполным, если не ощущать аромат царственного цветка.

И только аромат цветущих роз,

Летучий пленник, запертый в стекле,

Напоминает в стужу и мороз

О том, что было лето на земле.

Мы живём в мире разнообразных запахов и ароматов, они будоражат наше воображение, напоминают о благоухающем саде, цветущем луге и свежести фруктов.

Сейчас вы посмотрели фрагмент фильма, показывающий красоту и многообразие цветов — этих удивительно красивых и необыкновенно ароматных созданий природы и человека. Они излучают нежные арматы, которые в жизни растений имеют большое значение. Ароматы цветов привлекают насекомых для опыления, а фруктовые запахи притягивают животных и способствуют распространению семян.

У многих из нас самые яркие воспоминания связаны с определёнными ароматами. Представьте весну, пробуждение природы.

? Какие ароматы всплывают в вашей памяти? (Ароматы цветущей черёмухи, смолянистых тополиных почек, первых весенних цветов.)

Лабораторный опыт 1 «Определение запаха пищевых добавок и сравнение их с запахом соответствующих фруктов»

На столах учащихся в трёх флакончиках находятся вещества с различными фруктовыми ароматами. Учащиеся, за исключением тех, у кого аллергия на запахи, определяют предложенные ароматы, а затем сравнивают их с запахами аналогичных фруктов и ягод. Делают вывод, что ароматы фруктов и предложенные жидкости имеют сходные запахи.

Учитель: Ароматические вещества в выданных флаконах получены синтетическим способом, а ароматы фруктов и ягод созданы природой. Несмотря на разное происхождение, они обладают одинаковыми свойствами, а следовательно, и строением.

Цветочно-фруктовые запахи излучают сложные эфиры. Вы познакомитесь со строением сложных эфиров, способами их получения и применением.

Сложные эфиры в природе.

История открытия

Учитель: Много веков назад арабы уже знали различные способы получения душистых веществ из растений и выделений животных. Душистые вещества содержатся обычно в виде капелек в особых клетках. Они встречаются в цветах, листьях, кожуре плодов и даже в древесине. Их называют эфирными маслами. Они представляют собой сложные смеси душистых органических веществ.

В 1759 г. Л. де Лаурагваис перегонял крепкую уксусную кислоту с винным спиртом и получил некоторое количество жидкости, запах которой отличался от запаха исходных веществ. Так впервые был получен сложный эфир — продукт взаимодействия карбоновой кислоты и спирта:

СН3-СООН + С2Н5ОН —

— сн3соос2н5 + Н20.

Термин «эфир» впервые применил к синтетическим веществам Карл Вильгельм Шееле (1742-1786) в 1782 г. В труде «Исследования и заметки об эфире» он указал, что исходными веществами для их получения служат карбоновые кислоты и спирты, а в качестве катализатора используется минеральная серная кислота.

Аналогичным способом был получен в 1777 г. этиловый эфир муравьиной кислоты.

Получение сложных эфиров

Учитель: Прошло более 200 лет, а способ получения сложных эфиров в принципе не изменился. Сейчас мы с вами получим этиловый эфир уксусной кислоты.

Демонстрационный опыт «Получение этилового эфира уксусной кислоты»

Для проведения реакции необходимо взять растворы уксусной кислоты и этилового спирта в отношении 1:1, к смеси добавить концентрированную серную кислоту. Пробирку со смесью закрепляют в лапке штатива под углом 45°. Перед пробкой аккуратно на ватном тампоне закладывают обезвоженный сульфат меди (II). Закрывают пробирку пробкой с газоотводной трубкой, которую опускают в пробирку-приёмник. Пробирку закрывают ватным тампоном и помещают в стакан с водой.

По окончании опыта пробирку с полученным эфиром вынимают и проводят дегустацию запаха.

? Обратите внимание на сульфат меди(II). Что с ним произошло?

? Объясните причину изменения окраски. (В результате присоединения воды безводный сульфат меди(II) превращается в кристаллогидрат — вещество голубого цвета.)

Учитель: Произошла реакция между уксусной кислотой и этиловым спиртом, в результате которой образовались сложный эфир и вода. Такую реакцию называют реакцией этерификации.

Методом меченых атомов был доказан механизм протекания данной реакции. Оказалось, что молекула кислоты отдаёт гидроксильную группу, а молекула спирта — атом водорода:

www.testsoch.info

Сложные эфиры. Жиры. Мыла - ОРГАНИЧЕСКАЯ ХИМИЯ - ХИМИЯ - УНИВЕРСАЛЬНЫЙ СПРАВОЧНИК ШКОЛЬНИКА

ОРГАНИЧЕСКАЯ ХИМИЯ

Сложные эфиры. Жиры. Мыла

Сложные эфиры и их строение

При взаимодействии карбоновых кислот со спиртами (реакция этерификации) образуются сложные эфиры:

Эта реакция обратима. Продукты реакции могут взаимодействовать друг с другом с образованием исходных веществ — спирта и кислоты. Таким образом, реакция сложных эфиров с водой — гидролиз сложного эфира — обратна реакции этерификации. Химическое равновесие, устанавливающееся при равенстве скоростей прямой (этерификация) и обратной (гидролиз) реакций, может быть смещено в сторону образования эфира присутствием водоотнимающих средств.

Сложные эфиры в природе и технике

Сложные эфиры широко распространены в природе, находят применение в технике и различных отраслях промышленности. Они являются хорошими растворителями органических веществ, их плотность меньше плотности воды, и они практически не растворяются в ней. Так, сложные эфиры с относительно небольшой молекулярной массой представляют собой легко воспламеняющиеся жидкости с невысокими температурами кипения, имеют запахи различных фруктов. Их применяют в качестве растворителей лаков и красок, ароматизаторов изделий пищевой промышленности. Например, метиловый эфир масляной кислоты имеет запах яблок, этиловый эфир этой кислоты — запах ананасов, изобутиловый эфир уксусной кислоты — запах бананов:

Сложные эфиры высших карбоновых кислот и высших одноосновных спиртов называют восками. Так, пчелиный воск состоит главным образом из эфира пальмитиновой кислоты и мирицилового спирта С15Н31СООС31Н63; кашалотовый воск — спермацет — сложный эфир той же пальмитиновой кислоты и цетилового спирта С15Н31СООС16Н33.

Жиры

Важнейшими представителями сложных эфиров являются жиры.

Жиры — природные соединения, которые представляют собой сложные эфиры глицерина и высших карбоновых кислот.

- ЗАПОМНИ. Реакция образования сложных эфиров называется реакцией этерификации (от лат. ester — эфир).

Состав и строение жиров могут быть отражены общей формулой:

Большинство жиров образовано тремя карбоновыми кислотами: олеиновой, пальмитиновой и стеариновой. Очевидно, что две из них — предельные (насыщенные), а олеиновая кислота содержит двойную связь между атомами углерода в молекуле. Таким образом, в состав жиров могут входить остатки как предельных, так и непредельных карбоновых кислот в различных сочетаниях.

В обычных условиях жиры, содержащие в своем составе остатки непредельных кислот, чаще всего бывают жидкими. Их называют маслами. В основном это жиры растительного происхождения — льняное, конопляное, подсолнечное и другие масла. Реже встречаются жидкие жиры животного происхождения, например рыбий жир. Большинство природных жиров животного происхождения при обычных условиях — твердые (легкоплавкие) вещества и содержат в основном остатки предельных карбоновых кислот, например, бараний жир. Так, пальмовое масло — твердый в обычных условиях жир.

Состав жиров определяет их физические и химические свойства. Понятно, что для жиров, содержащих остатки ненасыщенных карбоновых кислот, характерны все реакции непредельных соединений. Они обесцвечивают бромную воду, вступают в другие реакции присоединения. Наиболее важная в практическом плане реакция — гидрирование жиров. Гидрированием жидких жиров получают твердые сложные эфиры. Именно эта реакция лежит в основе получения маргарина — твердого жира из растительных масел. Условно этот процесс можно описать уравнением реакции:

Все жиры, как и другие сложные эфиры, подвергаются гидролизу:

Мыла

Все жиры, как и другие сложные эфиры, подвергаются гидролизу. Гидролиз сложных эфиров — обратимая реакция. Чтобы сместить равновесие в сторону образования продуктов гидролиза, его проводят в щелочной среде (в присутствии щелочей или Na2CO3). В этих условиях гидролиз жиров протекает необратимо и приводит к образованию солей карбоновых кислот, которые называются мылами. Гидролиз жиров в щелочной среде называют омылением жиров.

При омылении жиров образуются глицерин и мыла — натриевые или калиевые соли высших карбоновых кислот:

compendium.su

Нахождение сложных эфиров в природе. — КиберПедия

1. Синтетические сложные эфиры в виде фруктовых эссенций используются наряду с другими душистыми веществами в производстве фруктовых вод, кондитерских изделий.

2. Также сложные эфиры используются при изготовлении духов и одеколонов.

3. Некоторые из сложных эфиров (например, этиловый эфир уксусной кислоты) служат растворителями.

Химические свойства сложных эфиров:

1) взаимодействие их с водой. Например, при нагревании этилового эфира уксусной кислоты с водой в присутствии неорганической кислоты образуются уксусная кислота и этиловый спирт;

2) такая реакция называется гидролизом.

Особенности реакции гидролиза:

а) эта реакция противоположна реакции образования сложного эфира;

б) реакция гидролиза сложного эфира обратима, так же как и реакция этерификации.

Жиры и углеводы

Жиры в природе, их физические свойства.

1. Наряду с углеводами и белками жиры входят в состав всех растительных и животных организмов и составляют одну из основных частей пищи.

2. Животные жиры, как правило, твердые вещества.

3. Растительные жиры чаще бывают жидкими и называются еще маслами.

4. Известны также жидкие жиры животного происхождения (например, рыбий жир) и твердые растительные масла (например, кокосовое масло).

5. Все жиры легче воды.

6. В воде они не растворимы, но хорошо растворяются во многих органических растворителях (дихлорэтане, бензине).

Особенности строения жиров.

Строение жиров было установлено М. Шеврелеми М. Бертло. Нагревая жиры с водой (в присутствии щелочи), М. Шеврель еще в начале XIX в. установил, что, присоединяя воду, они разлагаются на глицерин и карбоновые кислоты – стеариновую, олеиновую и др. М. Бертло (1854 г.) осуществил обратную реакцию. Он нагревал смесь глицерина с кислотами и получил при этом вещества, аналогичные жирам; М. Шеврель провел реакцию гидролиза сложного эфира, а М. Бертло осуществил реакцию этерификации, т. е. синтез сложного эфира. На основании этих данных легко прийти к выводу о строении жиров.

Характерные особенности жиров.

1. Жиры – это сложные эфиры трехатомного спирта глицерина и карбоновых кислот.

2. В большинстве случаев жиры образованы высшими предельными и непредельными карбоновыми кислотами, главным образом:

а) пальмитиновой C15h41-СООН;

б) стеариновой С17Н35-СООН;

в) олеиновой С17Н33-СООН;

г) линолевой С17Н31-СООН и некоторыми другими.

3. В меньшей степени в образовании жиров участвуют низшие кислоты, например, масляная кислота С3Н7-СООН (в сливочном масле), капроновая кислота С5Н11-СООН и др.

4. Жиры, которые образуются преимущественно предельными кислотами, твердые (говяжий жир, бараний жир).

5. С повышением содержания непредельных кислот температура плавления жиров понижается, они становятся более легкоплавкими (свиное сало, сливочное масло).

Химические свойства жировопределяются принадлежностью их к классу сложных эфиров. Поэтому наиболее характерная для них реакция – гидролиз.

Жиры как питательные вещества.

1. Жиры являются важной составной частью нашей пищи.

При их окислении в организме выделяется в два раза больше теплоты, чем при окислении таких же количеств белков и углеводов.

2. Как вещества, не растворимые в воде, жиры не могут непосредственно всасываться в организм из органов пищеварения.

Гидролиз жиров в технике. Гидрирование жиров

Гидролиз жиров в технике, его особенности:

1) реакция гидролиза используется в технике для получения из жиров глицерина, карбоновых кислот, мыла;

2) глицерин и кислоты образуются при нагревании жира с водой в автоклавах;

3) для получения мыла кислоты нагревают с раствором карбоната натрия;

4) чтобы выделить мыло, в раствор необходимо добавить хлорид натрия, при этом мыло всплывает наверх в виде плотного слоя – ядра. Из этой массы готовится ядровое мыло – обычные сорта хозяйственного мыла.

Для получения туалетного мыла ядровое мыло высушивают, смешивают с красящими и душистыми веществами, подвергают пластической обработке и штампуют в куски нужной формы.

Гидрирование жиров.

1. Для получения мыла и других веществ требуются преимущественно твердые жиры. В практике возможно превращение более дешевых растительных масел в твердые жиры, которые можно подвергать той или иной технической переработке.

2. Жидкие жиры отличаются от твердых непредельностью своего состава – наличием двойных связей в углеводородных радикалах.

3. Жидкие непредельные кислоты могут быть превращены в твердые путем присоединения к ним водорода, таким же путем можно превратить жидкие жиры в твердые.

Сущность способа гидрирования:

а) сущность способа гидрирования заключается в том, что через нагретую смесь масла с тонко измельченным катализатором (никелевым или медно-никелевым) пропускают водород под давлением;

б) водород присоединяется по месту двойных связей в углеводородных радикалах, и масло превращается в твердый жир, например:

4. В промышленности процесс гидрирования осуществляется в ряде последовательно соединенных автоклавов по непрерывному методу.

Проходя через систему автоклавов, жир подвергается все большему гидрированию; в результате получается масса, похожая по своей консистенции на сало.

Гидрированное масло называется еще саломасом. От катализатора саломас отделяется при помощи фильтрования.

Гидрированный жир– полноценный продукт для производства мыла, а при использовании определенных сортов масел – и для употребления в пищу, например в составе маргарина.

cyberpedia.su

Высшие жирные кислоты: стеариновая, пальмитиновая

 

Наибольшее значение имеют кислоты:

пальмитиновая С15Н31СООН

стеариновая С17Н35СООН

Они содержатся в виде сложных эфиров во всех растительных и животных жирах.

Контрольные вопросы:

1. Какие вещества называют карбоновыми кислотами? Приведите примеры. Какую функциональную группу называют карбоксильной?

2. Охарактеризуйте физические свойства карбоновых кислот

3. Укажите основные промышленные способы получения карбоновых кислот

4. Охарактеризуйте химические свойства карбоновых кислот

5. Применение карбоновых кислот

Сложные эфиры и жиры. Получение сложных эфиров реакцией этерификации. Сложные эфиры в природе, их значение. Применение сложных эфиров на основе свойств. Жиры как сложные эфиры. Классификация жиров. Химические свойства жиров: гидролиз и гидрирование жидких жиров. Применение жиров на основе свойств.Мыла.

Сложные эфиры —это вещества, которые образуются в результате взаимодействия органических или кислородсодержащих неорганических кислот со спиртами (реакции этерификации).

Общая формула сложных эфиров одноатомных спиртов и одноосновных карбоновых кислот:

R-COO-R, где R и R1 углеводородные радикалы, исключение – эфиры муравьиной кислоты

H–COO–R1.

Сложные эфиры – жидкости, обладающие приятными фруктовыми запахами. В воде они растворяются очень мало, но хорошо растворимы в спиртах. Сложные эфиры очень распространены в природе. Их наличием обусловлены приятные запахи цветов и фруктов. Они даже могут находиться в коре некоторых деревьев.

Эфиры высших одноосновных кислот и высших одноатомных спиртов – основа природных восков. Воски не растворяются в воде. Их можно формовать в нагретом состоянии. Примерами животных восков могут служить пчелиный воск, а также ворвань (спермацет), содержащийся в черепной коробке кашалота (кашалотовый воск). Пчелиный воск содержит сложный эфир пальмитиновой кислоты и мирицилового спирта (мирицилпальмитат): Ch4(Ch3)14–CO–O–(Ch3)29Ch4.

Как могут быть получены сложные эфиры?

Cложные эфиры могут быть получены при взаимодействии карбоновых кислот со спиртами (реакция этерификации). Катализаторами являются минеральные кислоты.

Обратный процесс – расщепление сложного эфира при действии воды с образованием карбоновой кислоты и спирта – называют гидролизом сложного эфира.

Гидролиз в присутствии щелочи протекает необратимо (т.к. образующийся отрицательно заряженный карбоксилат - анион RCOO– не вступает в реакцию с нуклеофильным реагентом – спиртом).

Эта реакция называется омылениемсложного эфира.



infopedia.su

Доклад - Cложные эфиры - Химия

Содержание стр.

Введение -3-

1. Строение -4-

2. Номенклатура и изомерия -6-

3. Физические свойства и нахождение в природе -7-

4. Химические свойства -8-

5. Получение -9-

6. Применение -10-

6.1 Применение сложных эфиров неорганических кислот -10-

6.2 Применение сложных эфиров органических кислот -12-

Заключение -14-

Использованные источники информации -15-

Приложение -16-

Введение

Среди функциональных производных кислот особое место занимают сложные эфиры — производные кислот, у которых кислотный водород заменён на алкильные (или вообще углеводородные) радикалы.

Сложные эфиры делятся в зависимости от того, производной какой кислоты они являются (неорганической или карбоновой).

Среди сложных эфиров особое место занимают природные эфиры — жиры и масла, которые образованы трехатомным спиртом глицерином и высшими жирными кислотами, содержащими четное число углеродных атомов. Жиры входят в состав растительных и животных организмов и служат одним из источников энергии живых организмов, которая выделяется при окислении жиров.

Цель моей работы заключается в подробном ознакомлении с таким классом органических соединений, как сложные эфиры и углублённом рассмотрении области применения отдельных представителей этого класса.

1. Строение

Общая формула сложных эфиров карбоновых кислот:

где R и R' — углеводородные радикалы (в сложных эфиpax муравьиной кислоты R — атом водорода).

Общая формула жиров:

гдеR', R", R"' — углеродные радикалы.

Жиры бывают “простыми” и “смешанными”. В состав простых жиров входят остатки одинаковых кислот (т. е. R’ = R" = R'"), в состав смешанных — различных.

В жирах наиболее часто встречаются следующие жирные кислоты:

Алкановые кислоты

1. Масляная кислота СН3 — (Ch3 )2 — СООН

2. Капроновая кислота СН3 — (Ch3 )4 — СООН

3. Пальмитиновая кислота СН3 — (Ch3 )14 — СООН

4. Стеариновая кислота СН3 — (Ch3 )16 — СООН

Алкеновые кислоты

5. Олеиновая кислота С17 Н33 СООН

СН3 —(СН2 )7 —СН === СН—(СН2 )7 —СООН

Алкадиеновые кислоты

6. Линолевая кислота С17 Н31 СООН

СН3 —(СН2 )4 —СН = СН—СН2 —СН = СН—СООН

Алкатриеновые кислоты

7. Линоленовая кислота С17 Н29 СООН

СН3 СН2 СН = CHCh3 CH == CHCh3 CH = СН(СН2 )4 СООН

2. Номенклатура и изомерия

Названия сложных эфиров производят от названия углеводородного радикала и названия кислоты, в котором вместо окончания -овая используют суффикс - ат, например:

Для сложных эфиров характерны следующие виды изомерии:

1. Изомерия углеродной цепи начинается по кислотному остатку с бутановой кислоты, по спиртовому остатку — с пропилового спирта, например, этилбутирату изомерны этилизобутират, пропилацетат и изопропилацетат.

2. Изомерия положения сложноэфирной группировки —СО—О—. Этот вид изомерии начинаетсясо сложных эфиров, в молекулах которых содержится не менее 4 атомов углерода, например этилацетат и метилпропионат.

3. Межклассовая изомерия, например, метилацетату изомерна пропановая кислота.

Для сложных эфиров, содержащих непредельную кислоту или непредельный спирт, возможны еще два вида изомерии: изомерия положения кратной связи и цис-, транс-изомерия.

3. Физические свойства и нахождение в природе

Сложные эфиры низших карбоновых кислот и спиртов представляют собой летучие, нерастворимые в воде жидкости. Многие из них имеют приятный запах. Так, например, бутилбутират имеет запах ананаса, изоамилацетат — груши и т. д.

Сложные эфиры высших жирных кислот и спиртов — воскообразные вещества, не имеют запаха, в воде не растворимы.

Приятный аромат цветов, плодов, ягод в значительной степени обусловлен присутствием в них тех или иных сложных эфиров.

Жиры широко распространены в природе. Наряду с углеводородами и белками они входят в состав всех растительных и животных организмов и составляют одну из основных частей нашей пищи.

По агрегатному состоянию при комнатной температуре жиры делятся на жидкие и твердые. Твердые жиры, как правило, образованы предельными кислотами, жидкие жиры (их часто называют маслами) — непредельными. Жиры растворимы в органических растворителях и нерастворимы в воде.

4. Химические свойства

1. Реакция гидролиза, или омыления. Так, как реакция этерификации является обратимой, поэтому в присутствии кислот протекает обратная реакция гидролиза:

Реакция гидролиза катализируется и щелочами; в этом случае гидролиз необратим, так как получающаяся кислота со щелочью образует соль:

2. Реакция присоединения. Сложные эфиры, имеющие в своем составе непредельную кислоту или спирт, способны к реакциям присоединения.

3. Реакция восстановления. Восстановление сложных эфиров водородом приводит к образованию двух спиртов:

4. Реакция образования амидов. Под действием аммиака сложные эфиры превращаются в амиды кислот и спирты:

5. Получение

1. Реакция этерификации:

Спирты вступают в реакции с минеральными и органическими кислотами, образуя сложные эфиры. Реакция обратима (обратный процесс – гидролиз сложных эфиров).

Реакционная способность одноатомных спиртов в этих реакциях убывает от первичных к третичным.

2. Взаимодействием ангидридов кислот со спиртами:

3. Взаимодействием галоидангидридов кислот со спиртами:

6. Применение

6.1 Применение сложных эфиров неорганических кислот

Эфиры борной кислоты — триалкилбораты — легко получаются нагреванием спирта и борной кислоты с добавкой концентрированной серной кислоты. Борнометиловый эфир (триметилборат) кипит при 65° С, борноэтиловый (триэтилборат) — при 119° С. Эфиры борной кислоты легко гидролизуются водой.

Реакция с борной кислотой служит для установления конфигурации многоатомных спиртов и была неоднократно использована при изучении Сахаров.

Ортокремневые эфиры — жидкости. Метиловый эфир кипит при 122° С, этиловый при 156° С. Гидролиз водой проходит легко уже на холоду, но идет постепенно и при недостатке воды приводит к образованию высоко­молекулярных ангидридных форм, в которых атомы кремния соединены друг с другом через кислород (силоксановые группировки):

Эти высокомолекулярные вещества (полиалкоксисилоксаны) находят применение в качестве связующих, выдерживающих довольно высокую температуру, в частности для покрытия поверхности форм для точной отливки металла.

Аналогично SiCl4 реагируют диалкилдихлорсиланы, например ((СН3 )2 SiCl2, образуя диалкоксильные производные:

Их гидролиз при недостатке воды дает так называемые полиалкилсилоксаны:

Они обладают разным (но очень значительным) молекулярным весом и представляют собой вязкие жидкости, используемые в качестве термо­стойких смазок, а при еще более длинных силоксановых скелетах — термостойкие электроизоляционные смолы и каучуки.

Эфиры ортотитановой кислоты. Их получают аналогично ортокремневым эфирам по реакции:

Это жидкости, легко гидролизующиеся до метилового спирта и TiO2 применяются для пропитки тканей с целью придания им водонепроницаемости.

Эфиры азотной кислоты. Их получают действием на спирты смеси азотной и концентрированной серной кислот. Метилнитрат СН3 ONO2, (т. кип. 60° С) и этилнитрат C2 H5 ONO2 (т. кип. 87° С) при осторожной работе можно перегнать, но при нагревании выше температуры кипения или при детонации они очень сильно взрывают.

Нитраты этиленгликоля и глицерина, неправильно называемые нитрогликолем и нитроглицерином, применяются в качестве взрывчатых веществ. Сам нитроглицерин (тяжелая жидкость) неудобен и опасен в обращении.

Пентрит — тетранитрат пентаэритрита С(Ch3 ONO2 )4, получаемый обработкой пентаэритрита смесью азотной и серной кислот, — тоже сильное взрывчатое вещество бризантного действия.

Нитрат глицерина и нитрат пентаэритрита обладают сосудорасширя­ющим эффектом и применяются как симптоматические средства при сте­нокардии.

Эфиры фосфорной кислоты — высококипящие жидкости, лишь очень медленно гидролизуемые водой, быстрее щелочами и разбавленными кислотами. Эфиры, образованные этерификацией высших спиртов (и фено­лов), находят применение как пластификаторы пластмасс и для извлече­ния солей уранила из водных растворов.

Известны эфиры типа (RO)2S═O, но они не имеют практического значения.

Из алкилсульфатов — солей сложных эфиров высших спиртов и серной кислоты производят моющие средства. В общем виде образование таких солей можно изобразить уравнениями:

Эти соли содержат в молекуле от 12 до 14 углеродных атомов и обладают очень хорошими моющими свойствами. Кальциевые и магниевые соли растворимы в воде, а потому такие мыла моют и в жесткой воде. Алкилсульфаты содержатся во многих стиральных порошках.

Они и обладают прекрасными моющими способностями. Принцип их действия тот же, что и у обычного мыла, только кислотный остаток серной кислоты лучше адсорбируется частицами загрязнения, а кальцевые соли алкилсерной кислоты растворимы в воде, поэтому это моющее средство стирает и в жесткой, и в морской воде.

6.2 Применение сложных эфиров органических кислот

Наибольшее применение в качестве растворителей получили эфиры уксусной кислоты — ацетаты. Прочие эфиры (кислот молочной — лактаты, масляной — бутираты, муравьиной — формиаты) нашли ограниченное применение. Формиаты из-за сильной омыляемости и высокой токсичности в настоящее время не используются. Определенный интерес представляют растворители на основе изобутилового спирта и синтетических жирных кислот, а также алкиленкарбонаты. Физико-химические свойства наиболее распространенных сложных эфиров приведены в таблице (см. приложение).

Метилацетат СН3 СООСН3. Отечественной промышленностью технический метилацетат выпускается в виде древесно-спиртового растворителя, в котором содержится 50% (масс.) основного продукта. Метилацетат также образуется в виде побочного продукта при производстве поливинилового спирта. По растворяющей способности метилацетат аналогичен ацетону и применяется в ряде случаев как его заменитель. Однако он обладает большей токсичностью, чем ацетон.

Этилацетат С2 Н5 СООСН3. Получают методом этерификации на лесохимических предприятиях при переработке синтетической и лесохимической уксусной кислоты, гидролизного и синтетического этилового спирта или конденсацией ацетальдегида. За рубежом разработан процесс получения этилацетата на основе метилового спирта. Этилацетат подобно ацетону растворяет большинство полимеров. По сравнению с ацетоном его преимущество в более высокой температуре кипения (меньшей летучести). Добавка 15-20 % этилового спирта повышает растворяющую способность этилацетата в отношении эфиров целлюлозы, особенно ацетилцеллюлозы.

Пропилацетат СН3 СООСН2 СН2 СН3. По растворяющей способности подобен этилацетату.

Изопропилацетат СН3СООСН(СН3 )2. По свойствам занимает промежуточное положение между этил- и пропилацетат.

Амилацетат Ch4 COOCh3 Ch3 Ch3 Ch3 Ch4, т. кип. 148° С, иногда называют «банановым маслом» (которое он напоминает по запаху). Он образуется в реакции между амиловым спиртом (часто – сивушным маслом) и уксусной кислотой в присутствии катализатора. Амилацетат широко применяется как растворитель для лаков, поскольку он испаряется медленнее, чем этилацетат.

Фруктовые эфиры. Характер многих фруктовых запахов, таких, как запахи малины, вишни, винограда и рома, отчасти обусловлен летучими эфирами, например этиловым и изоамиловым эфирами муравьиной, уксусной, масляной и валериановой кислот. Имеющиеся в продаже эссенции, имитирующие эти запахи, содержат подобные эфиры.

Винилацетат Ch3 =CHOOCCh4, образуется при взаимодействии уксусной кислоты с ацетиленом в присутствии катализатора. Это важный мономер для приготовления поливинилацетатных смол, клеев и красок.

Мыла — это соли высших карбоновых кислот.Обычные мыла состоят главным образом из смеси солей пальмитиновой, стеариновой и олеиновой кислот. Натриевые соли образуют твердые мыла, калиевые соли — жидкие мыла.

Мыла получаются при гидролизе жиров в присутствии щелочей:

Обычное мыло плохо стирает в жесткой воде и совсем не стирает в морской воде, так как содержащиеся в ней ионы кальция и магния дают с высшими кислотами нерастворимые в воде соли:

Ca2+ + 2C17 h45 COONa→Ca(C17 h45 COO)2 ↓ + 2Na+

В настоящее время для стирки в быту, для промывки шерсти и тканей в промышленности используют синтетические моющие средства, которые обладают в 10 раз большей моющей способностью, чем мыла, не портят тканей, не боятся жесткой и даже морской воды.

Заключение

Исходя из вышесказанного, можно сделать вывод, что сложные эфиры находят широкое применение, как в быту, так и в промышленности. Некоторые из сложных эфиров готовятся искусственно и под названием «фруктовых эссенций» широко применяются в кондитерском деле, в производстве прохладительных напитков, в парфюмерии и во многих других отраслях. Жиры используют для многих технических целей. Однако особенно велико их значение как важнейшей составной части рациона человека и животных, наряду с углеводами и белками. Прекращение использования пищевых жиров в технике и замена их непищевыми материалами – одна из важнейших задач народного хозяйства. Эта задача может быть разрешена только при достаточно основательных знаниях о сложных эфирах и дальнейшем изучении этого класса органических соединений.

Использованные источники информации

1. Цветков Л.А. Органическая химия: Учебник для 10-11 классов общеобразовательных учебных заведений. — М.: Гуманит. изд. центр ВЛАДОС, 2001;

2. Несмеянов А. Н., Несмеянов Н. А., Начала органической химии, кн. 1-2, М.,1969-70.;

3. Глинка Н. Л. Общая химия: Учебное пособие для вузов. – 23-е изд., испр./ Под ред. В. А. Рабиновича. – Л.: Химия, 1983;

4. penza.fio.ru

5. encycl.yandex.ru

Приложение

Физико-химические свойства сложных эфиров

Название Давление пара при 20°С, кПа Молеку- лярная масса Темпера- тура кипения при 101,325 кПа. °С Плотность при 20°С. г/см3 Показа- тель перелом- ления n20 Поверхнос- тное натяжение 20°С. мН/м
Метилацетат 23,19 74,078 56,324 0,9390 1,36193 24,7625,7
Этилацетат 9,86 88,104 77,114 0,90063 1,37239 23,75
Пропилацетат 3,41 102,13 101,548 0,8867 1,38442 20,53
Изопропилацетат 8,40 102,13 88,2 0,8718 1,37730 22,1022
Бутилацетат 2,40 116,156 126,114 0,8813 1,39406 25,2
Изоиутилацетат 1,71 116,156 118 0,8745 1,39018 23,7
Втор-Бутилацетат - 116,156 112,34 0,8720 1,38941 23,3322,1
Гексилацетат - 114,21 169 0,890 - -
Амилацетат 2,09 130,182 149,2 0,8753 1,40228 25,8
Изоамилацетат 0,73 130,182 142 0,8719 1,40535 24,6221,1
Ацетат монометилового эфира этиленгликоля (метилцеллозольвацетат) 0,49 118,0 144,5 1,007 1,4019 -
Ацетат моноэтилового эфира этиленгликоля (этилцеллозольвацетат) 0,17 132,16 156,4 0,9748 1,4030 -
Этиленгликольмоноацетат - 104 181-182 1,108-1,109 - -
Этиленгликольдиацетат 0,05 146 186-190 1,106 - -
Циклогексилацетат 0,97 142 175 0,964 1,4385 -
Этиллактат 0,13 118,13 154,5 1,031 1,4118 28,917,3
Бутиллактат 0,05 146,0 185 0,97 - -
Пропиленкарбонат - 102,088 241,7 1,206 1,4189 -

www.ronl.ru

Урок по химии на тему "Сложные эфиры, жиры,мыла"

План урока

Тема урока: СЛОЖНЫЕ ЭФИРЫ, ЖИРЫ, МЫЛА.

Раздел: Органическая химия.

Тема 2.3: Кислородсодержащие органические соединения.

Цели: Получение сложных эфиров реакцией этерификации. Сложные эфиры в природе, их значение. Применение сложных эфиров на основе свойств.Жиры как сложные эфиры. Классификация жиров. Химические свойства жиров: гидролиз и гидрирование жидких жиров. Применение жиров на основе свойств. Мыла.

Систематизировать знания о сложных эфирах, их строении, нахождении в природе и свойствах. Сформировать представление о жирах, их составе, свойствах и применении. Ознакомить с солями жиров – мылами.

Задачи:

Образовательные:

познакомить учащихся с жирами, их строением и классификацией; изучить получение и химические свойства жиров;познакомить с функциями жиров в организме человека; познакомить с применением сложных эфиров и жиров.

Развивающие: развить умения применять ИКТ;продолжить развитие умений анализировать; развивать логическое мышление, практические умения и умения прогнозировать.

Воспитательные: создание эффекта необычности для мотивации обучения;воспитание бережного отношения к природе.

Тип урока: комбинированный урок.

Формы и методы: лекция с элементами беседы, интерактивная технология «Микрофон», коллективное обсуждение, работа у доски, самостоятельная работа, использование ИКТ.

Оборудование: компьютер, мультимедийный проектор, интеракивная доска, химические реактивы и лабораторное оборудование.

Структура урока

1 ЭТАП – ОРГАНИЗАЦИОННЫЙ (2 МИН)

2 ЭТАП – АКТУАЛИЗАЦИЯ И МОТИВАЦИЯ ОПОРНЫХ ЗНАНИЙ УЧАЩИХСЯ (3 МИН)

Коллективное обсуждение.

Обучающимся предлагается понюхать флаконы с лимонной и ананасовой эссенцией.

«Микрофон»

Вопрос: Какие химические соединения отвечают за запах рассматриваемых ароматизаторов?

3 ЭТАП – ИЗУЧЕНИЕ НОВОГО МАТЕРИАЛА (35 МИН)

Лекция с использованием ИКТ и элементами беседы.

«Микрофон»

Как вы считаете, какая тема нашего урока? Обучающиеся записывают тему в тетради.

Тема: Сложные эфиры. Жиры. (Слайд 1)

Наш урок мы посвятим очень важной теме: “Сложные эфиры. Жиры”, которые имеет большое практическое значение в нашей жизни. Сложные эфиры являются составной частью эфирных масел (известно около 3000 эф.м. – апельсиновое, лавандовое, розовое и т. д.)

Эфиры низших карбоновых кислот и низших одноатомных спиртов имеют приятный запах цветов, ягод и фруктов. Эфиры высших одноосновных кислот и высших одноатомных спиртов – основа природных восков. Например, пчелиный воск содержит сложный эфир пальмитиновой кислоты и мирицилового спирта (мирицилпальмитат): Ch4(Ch3)14–CO–O–(Ch3)29Ch4

  1. Что такое сложные эфиры?

Запись в тетради.

Сложные эфиры — это вещества, которые образуются в результате взаимодействия органических или кислородсодержащих неорганических кислот со спиртами (реакции этерификации).

Общая формула сложных эфиров одноатомных спиртов и одноосновных карбоновых кислот:

R-COO-R, где R и R1 углеводородные радикалы, исключение – эфиры муравьиной кислоты

H–COO–R1.

  1. Сложные эфиры в природе. (Слайд 2)

Запись в тетради.

Сложные эфиры – функциональные производные карбоновых кислот,  в молекулах которых гидроксильная группа (-ОН) замещена на остаток спирта (-OR)

 

Сложные эфиры карбоновых кислот – соединения с общей формулой

R–COOR',         где R и R' – углеводородные радикалы.

Сложные эфиры – жидкости, обладающие приятными фруктовыми запахами. В воде они растворяются очень мало, но хорошо растворимы в спиртах. Сложные эфиры очень распространены в природе. Их наличием обусловлены приятные запахи цветов и фруктов. Они даже могут находиться в коре некоторых деревьев.

Посмотрите на экран и рассмотрите состав сложных эфиров, которые  придают запах цветам. Демонстрируются слайды: запах жасмина - бензилпропаноат, хризантемы – сложный эфир фенилэтилового спирта и муравьиной кислоты. Как мы видим сложные эфиры, которые  имеют цветочные запахи, это чаще всего производные ароматических кислот или ароматических  спиртов. А вот сложные эфиры, которые входят в состав известных вам фруктов имеют довольно простой состав.

Эфиры высших одноосновных кислот и высших одноатомных спиртов – основа природных восков. Воски не растворяются в воде. Их можно формовать в нагретом состоянии. Примерами животных восков могут служить пчелиный воск, а также ворвань (спермацет), содержащийся в черепной коробке кашалота (кашалотовый воск). Пчелиный воск содержит сложный эфир пальмитиновой кислоты и мирицилового спирта (мирицилпальмитат): Ch4(Ch3)14–CO–O–(Ch3)29Ch4.

  1. Физические свойства сложных эфиров. (Слайд 3)

Запись в тетради.

Физические свойства сложных эфиров:

  • Летучие, бесцветные жидкости

  • Плохо растворимы в воде

  • Чаще с приятным запахом

  • Легче воды

  1. Название сложных эфиров. (Слайд 4)

Запись в тетради.

Название сложных эфиров:

Краткие названия сложных эфиров строятся по названию радикала (R') в остатке спирта и названию группы RCOO- в остатке кислоты.

Например, этиловый эфир уксусной кислоты Ch4COOC2H5 называется этилацетат.

  1. Получение сложных эфиров. (Слайд 5)

Демонстрация видеофрагмента:

В пробирку налить 2 мл изоамилового (изопентилового) спирта, 2 мл уксусной кислоты и 0,5 мл концентрированной серной кислоты. Закрыть пробирку газоотводной трубкой и нагреть на водяной ба не в течение нескольких минут. После охлаждения добавить в пробирку несколько миллилитров воды. При этом, образуется слой изоамилового эфира уксус ной кислоты (изоамилацетата) с характерным запахом грушевой эссенции.

Вопросы для обсуждения:

  • Как называется взаимодействие кислот со спиртами? Напишите уравнение реакции изоамилового спирта с уксусной кислотой.

  • Для чего в реакционную смесь, содержащую спирт и карбоновую кислоту, добавляют концентрированную серную кислоту?

  • Как вы думаете, где находят применение сложные эфиры?

  • Как могут быть получены сложные эфиры?

Cложные эфиры могут быть получены при взаимодействии карбоновых кислот со спиртами (реакция этерификации). Катализаторами являются минеральные кислоты.

Обучающиеся записывают в тетрадь реакцию этерификации.

  1. Основные свойства сложных эфиров. (Слайд 6)

Обратный процесс – расщепление сложного эфира при действии воды с образованием карбоновой кислоты и спирта – называют гидролизом сложного эфира.

Гидролиз в присутствии щелочи протекает необратимо (т.к. образующийся отрицательно заряженный карбоксилат - анион RCOO– не вступает в реакцию с нуклеофильным реагентом – спиртом).

Эта реакция называется омылением сложного эфира.

Обучающиеся записывают в тетрадь реакции гидролиза и омыления.

  1. Применение сложных эфиров. (Слайд 7)

Применение сложных эфиров очень разнообразно (Сообщение).

Их применяют в промышленности в качестве растворителей и промежуточных продуктов при синтезе различных органических соединений. Сложные эфиры с приятным запахом используют в парфюмерии и пищевой промышленности. Сложные эфиры часто служат исходными веществами в производстве многих фармацевтических препаратов.

  1. Жиры, как сложные эфиры. (Слайд 8)

Важнейшими представителями сложных эфиров являются жиры.

При нагревании жиров с водой в щелочной среде французский ученый Э. Шеврель установил, что жиры расщепляются и образуются глицерин и различные карбоновые кислоты. Французский ученый М.Бертло в 1854 г. осуществил обратный процесс: при нагревании глицерина с высшими карбоновыми кислотами он получил жиры и воду.

На основании этих экспериментов сделали вывод, что

Запись в тетрадь.

Жиры – это сложные эфиры трехатомного спирта глицерина и высших карбоновых кислот, общая формула которых изображена на слайде.

Жиры, как это не удивительно, относятся к сложным эфирам. В их образовании участвуют стеариновая кислота С17Н35СООН (или близкие к ней по составу и строению другие жирные кислоты) и трехатомный спирт глицерин С3Н5(ОН)3. Вот как выглядит схема молекулы такого эфира:

    Н2С- О –С(О)С17Н35

          |

        НС- О –С(О)С17Н35

          |

      Н2С- О –С(О)С17Н35 тристеарин, эфир глицерина и стеариновой кислоты, тристеарат глицерина.

Жиры имеют сложное строение – это подтверждает модель молекулы тристеарата.

  1. Классификация жиров.

Наиболее важные ВКК, входящие в состав жиров:

Название кислоты

(кислотного остатка)

Эмпирическая формула ВКК

Название кислоты

(кислотного остатка)

С15Н31СООН

Пальмитиновая

(пальмитат)

С17Н33СООН

Олеиновая

(олеат)

С17Н35СООН

Стеариновая

(стеарат)

С17Н31СООН

Линолевая

(линолеат)

С17Н29СООН

Линоленовая

  1. Физические свойства жиров.

Запись в тетрадь.

По физическим свойствам жиры – твердые вещества или вязкие жидкости.

Эксперимент.

Рассмотрим растворимость жиров (опыт) нальем в пробирки различные растворители (воду, этанол, бензол, бензил) и добавим в каждую пробирку растительное масло, и встряхнем. Жиры в воде не растворяются, но растворяются в органических растворителях (бензиле, бензоле, гексане...). Поэтому их можно извлечь экстракцией из измельченных семян растений или из животных продуктов этими растворителями при нагревании.

  1. Основные химические свойства жиров. (Слайд 9)

Для жиров, содержащих остатки ненасыщенных карбоновых кислот, характерны все реакции непредельных соединений.

Наиболее важная реакция присоединения, имеющая практическое значение – это гидрирование жидких жиров. Эта реакция лежит в основе получения маргарина (твердого жира) из растительного масла.

Все жиры, как и другие сложные эфиры, подвергаются гидролизу.

Гидролиз жиров протекает и в нашем организме: когда в органы пищеварения поступают жиры, то под влиянием ферментов они гидролизуются с образованием глицерина и карбоновых кислот. Продукты гидролиза всасываются ворсинками кишечника, а затем синтезируется жир, но уже свойственный данному организму. В дальнейшем они гидролизуются и постепенно окисляются до углекислого газа и воды. При окислении жиров в организме выделяется большое количество энергии. Для людей, занятых тяжелым физическим трудом, затраченную энергию проще всего компенсировать жирной пищей. Жиры поставляют в ткани организма жирорастворимые витамины и другие биологические активные вещества.

В зависимости от условий гидролиз бывает:

  • Водный (без катализатора, при высоких температуре и давлении).

  • Кислотный (в присутствии кислоты в качестве катализатора).

  • Ферментативный (происходит в живых организмах).

  • Щелочной (под действием щелочей).

Гидролиз сложных эфиров – обратимая реакция. Для смещения равновесия в сторону продуктов реакции его проводят в щелочной среде (в присутствии щелочей или карбонатов щелочных металлов, например, карбоната натрия).

Гидролиз жиров в щелочной среде называют омылением жиров, т.к. образуются соли карбоновых кислот, которые называют мылами.

  1. Применение жиров.

Применение жиров (сообщение).

Многие жиры при стоянии на воздухе прогоркают – приобретают неприятные запах и вкус, так как при этом образуются кетоны и альдегиды. Такой процесс стимулируется железом, поэтому нельзя оставлять масло в сковороде до следующего дня. Для предотвращения его применяют антиоксиданты.Прокисание жира связано с гидролизом его. Кислый вкус обусловлен появлением карбоновых кислот.

Весьма важными являются реакции полимеризации масел. По этому признаку растительные масла делят на высыхающие, полувысыхающие и невысыхающие. Высыхающие в тонком слое образуют блестящие тонкие пленки. На этом основано использование этих масел для приготовления лаков и красок (льняное). К полу высыхающим относятся, например, подсолнечное, а к невысыхающим относится оливковое, содержащее мало непредельных кислот.

  1. Биологическая роль жиров.

Жиры имеют большое практическое значение и выполняют в нашем организме несколько функций: 

  • Энергетическая (при полном расщеплении 1 г жира до СО2 и Н2О освобождается 38,9 кДж энергии).

  • Структурная (жиры – важный компонент каждой клетки).

  • Защитная (жиры накапливаются в подкожных тканях и тканях, окружающих внутренние органы).

  • Жиры обладают низкой теплопроводностью и предохраняют организм от переохлаждения. Поэтому северяне, употребляют много животных жиров.

  1. Мыла. (Слайд 10)

Запись в тетрадь.

Мыла – натриевые или калиевые соли высших карбоновых кислот. Натриевые соли высших карбоновых кислот имеют твердое агрегатное состояние, а калиевые – жидкое (жидкое мыло).

При изготовлении мыла в него добавляют душистые вещества, глицерин, красители, антисептики, растительные экстракты.

Исходным сырьем для получения мыла служат растительные масла (подсолнечное, хлопковое и др.), животные жиры, а также гидроксид натрия или кальцинированная сода. Растительные масла предварительно подвергаются гидрогенизации, т. е. их превращают в твердые жиры. Применяются также заменители жиров — синтетические карбоновые жирные кислоты с большей молекулярной массой.

Беседа.

«Микрофон»

Если мы используем для мытья и стирки жесткую воду, а такая вода содержит ионы Са 2+ и Mg2+,то мыло теряет свою моющую способность.

Это происходит в результате того, что кальциевые и магниевые соли высших карбоновых кислот нерастворимы в воде. Запишем уравнение реакции:

2С17Н35СООNa + СаСI2 = (C17 h45COO)2Ca ↓ + 2NaCI

Чтобы удалить нерастворимые соли кальция и жирных кислот.

4 ЭТАП – ОБОБЩЕНИЕ И СИСТЕМАТИЗАЦИЯ ЗНАНИЙ ОБУЧАЮЩИХСЯ. (5 МИН.)

Коллективное обсуждение.

Знаете ли вы?

  • Какую роль играет жир в горбе верблюда? (Источник воды).

  • Какие масла влияют на содержание холестерина в крови? (Животные).

Тестирование (Слайд 11)

1 - В результате гидролиза жидкого жира образуются:

1) твердые жиры и глицерин;                     3) глицерин и непредельные кислоты;

2) глицерин и предельные кислоты;        4) твердые жиры и смесь кислот.

2 - В каком веществе жиры не растворяются?

1) в бензоле;        3) в воде;

2) в бензине;        4) в хлороформе.

3 - Для превращения жидких жиров в твердые используют реакцию:

1) дегидрогенизации;        3) гидрогенизации;

2) гидратации;                     4) дегидроциклизации.

4 - В результате гидрирования жидких жиров образуются:

1) твердые жиры и непредельные кислоты;        3) твердые жиры и глицерин;

2) твердые жиры и предельные кислоты;            4) твердые жиры.

Задания повышенного уровня сложности

Составьте уравнения реакций, с помощью которых можно осуществить следующие  превращения. Укажите условия протекания реакций. Дайте названия всем соединениям.

1-й уровень

Ch5              Ch4Cl            Ch4OH               HCOOH             HCOOC3H7

2-й уровень

Этилен      этанол     ацетальдегид      

уксусная кислота      этилацетат       этанол     углекислый газ

3-й уровень

Как из углеводорода (предельного, непредельного) перейти к сложному эфиру? Приведите примеры реакций, составьте свои «цепочки» превращений.

5 ЭТАП – ПОДВЕДЕНИЕ ИТОГОВ УРОКА

Слово учителя.

Рефлексия.(Слайд 12)

Если понравился урок – поставь смайлик веселый, не понравился – грустный, если вам безразлично – то равнодушный.

Домашнее задание: Записи (учить).

infourok.ru

СЛОЖНЫЕ ЭФИРЫ | Энциклопедия Кругосвет

Содержание статьи

СЛОЖНЫЕ ЭФИРЫ – класс соединений на основе минеральных (неорганических) или органических карбоновых кислот, у которых атом водорода в НО-группе замещен органической группой R. Прилагательное «сложные» в названии эфиров помогает отличить их от соединений, именуемых простыми эфирами.

Если исходная кислота многоосновная, то возможно образование либо полных эфиров – замещены все НО-группы, либо кислых эфиров – частичное замещение. Для одноосновных кислот возможны только полные эфиры (рис.1).

Рис. 1. ПРИМЕРЫ СЛОЖНЫХ ЭФИРОВ на основе неорганической и карбоновой кислоты

Номенклатура сложных эфиров.

Название создается следующим образом: вначале указывается группа R, присоединенная к кислоте, затем – название кислоты с суффиксом «ат» (как и в названиях неорганических солей: карбонат натрия, нитрат хрома). Примеры на рис. 2

Рис. 2. НАЗВАНИЯ СЛОЖНЫХ ЭФИРОВ. Фрагменты молекул и соответствующие им фрагменты названий выделены одинаковым цветом. Сложные эфиры обычно рассматривают как продукты реакции между кислотой и спиртом, например, бутилпропионат можно воспринимать как результат взаимодействия пропионовой кислоты и бутанола.

Если используют тривиальное (см. ТРИВИАЛЬНЫЕ НАЗВАНИЯ ВЕЩЕСТВ) название исходной кислоты, то в название соединения включают слово «эфир», например, С3Н7СООС5Н11 – амиловый эфир масляной кислоты.

Классификация и состав сложных эфиров.

Среди изученных и широко применяемых сложных эфиров большинство представляют соединения, полученные на основе карбоновых кислот. Сложные эфиры на основе минеральных (неорганических) кислот не столь разнообразны, т.к. класс минеральных кислот менее многочисленен, чем карбоновых (многообразие соединений – один из отличительных признаков органической химии).

Когда число атомов С в исходных карбоновой кислоте и спирте не превышает 6–8, соответствующие сложные эфиры представляют собой бесцветные маслянистые жидкости, чаще всего с фруктовым запахом. Они составляют группу фруктовых эфиров. Если в образовании сложного эфира участвует ароматический спирт (содержащий ароматическое ядро), то такие соединения обладают, как правило, не фруктовым, а цветочным запахом. Все соединения этой группы практически нерастворимы в воде, но легко растворимы в большинстве органических растворителей. Интересны эти соединения широким спектром приятных ароматов (табл. 1), некоторые из них вначале были выделены из растений, а позже синтезированы искусственно.

Табл. 1. НЕКОТОРЫЕ СЛОЖНЫЕ ЭФИРЫ, обладающие фруктовым или цветочным ароматом (фрагменты исходных спиртов в формуле соединения и в названии выделены жирным шрифтом)
Формула сложного эфира Название Аромат
СН3СООС4Н9 Бутилацетат грушевый
С3Н7СООСН3 Метиловый эфир масляной кислоты яблочный
С3Н7СООС2Н5 Этиловый эфир масляной кислоты ананасовый
С4Н9СООС2Н5 Этиловый эфир изовалериановой кислоты малиновый
С4Н9СООС5Н11 Изоамиловый эфир изовалериановой кислоты банановый
СН3СООСН2С6Н5 Бензилацетат жасминовый
С6Н5СООСН2С6Н5 Бензилбензоат цветочный

При увеличении размеров органических групп, входящих в состав сложных эфиров, до С15–30 соединения приобретают консистенцию пластичных, легко размягчающихся веществ. Эту группу называют восками, они, как правило, не обладают запахом. Пчелиный воск содержит смесь различных сложных эфиров, один из компонентов воска, который удалось выделить и определить его состав, представляет собой мирициловый эфир пальмитиновой кислоты С15Н31СООС31Н63. Китайский воск (продукт выделения кошенили – насекомых Восточной Азии) содержит цериловый эфир церотиновой кислоты С25Н51СООС26Н53. Кроме того, воски содержат и свободные карбоновые кислоты и спирты, включающие большие органические группы. Воски не смачиваются водой, растворимы в бензине, хлороформе, бензоле.

Третья группа – жиры. В отличие от предыдущих двух групп на основе одноатомных спиртов ROH, все жиры представляют собой сложные эфиры, образованные из трехатомного спирта глицерина НОСН2–СН(ОН)–СН2ОН. Карбоновые кислоты, входящие в состав жиров, как правило, имеют углеводородную цепь с 9–19 атомами углерода. Животные жиры (коровье масло, баранье, свиное сало) – пластичные легкоплавкие вещества. Растительные жиры (оливковое, хлопковое, подсолнечное масло) – вязкие жидкости. Животные жиры, в основном, состоят из смеси глицеридов стеариновой и пальмитиновой кислоты (рис. 3А,Б). Растительные масла содержат глицериды кислот с несколько меньшей длиной углеродной цепи: лауриновой С11Н23СООН и миристиновой С13Н27СООН. (как и стеариновая и пальмитиновая – это насыщенные кислоты). Такие масла могут долго храниться на воздухе, не меняя своей консистенции, и потому называются невысыхающими. В отличие от них, льняное масло содержит глицерид ненасыщенной линолевой кислоты (рис. 3В). При нанесении тонким слоем на поверхность такое масло под действием кислорода воздуха высыхает в ходе полимеризации по двойным связям, при этом образуется эластичная пленка, не растворимая в воде и органических растворителях. На основе льняного масла изготавливают натуральную олифу.

Рис. 3. ГЛИЦЕРИДЫ СТЕАРИНОВОЙ И ПАЛЬМИТИНОВОЙ КИСЛОТЫ (А И Б) – компоненты животного жира. Глицерид линолевой кислоты (В) – компонент льняного масла.

Сложные эфиры минеральных кислот (алкилсульфаты, алкилбораты, содержащие фрагменты низших спиртов С1–8) – маслянистые жидкости, эфиры высших спиртов (начиная с С9) – твердые соединения.

Химические свойства сложных эфиров.

Наиболее характерно для эфиров карбоновых кислот гидролитическое (под действием воды) расщепление сложноэфирной связи, в нейтральной среде оно протекает медленно и заметно ускоряется в присутствии кислот или оснований, т.к. ионы Н+ и НО– катализируют этот процесс (рис. 4А), причем гидроксильные ионы действуют более эффективно. Гидролиз в присутствии щелочей называют омылением. Если взять количество щелочи, достаточное для нейтрализации всей образующейся кислоты, то происходит полное омыление сложного эфира. Такой процесс проводят в промышленном масштабе, при этом получают глицерин и высшие карбоновые кислоты (С15–19) в виде солей щелочных металлов, представляющих собой мыло (рис. 4Б). Содержащиеся в растительных маслах фрагменты ненасыщенных кислот, как и любые ненасыщенные соединения, могут быть прогидрированы, водород присоединяется к двойным связям и образуются соединения, близкие к животным жирам (рис. 4В). Этим способом в промышленности получают твердые жиры на основе подсолнечного, соевого или кукурузного масла. Из продуктов гидрирования растительных масел, смешанных с природными животными жирами и различными пищевыми добавками, изготавливают маргарин.

Основной способ синтеза – взаимодействие карбоновой кислоты и спирта, катализируемое кислотой и сопровождаемое выделением воды. Эта реакция обратна показанной на рис. 3А. Чтобы процесс шел в нужном направлении (синтез сложного эфира), из реакционной смеси дистиллируют (отгоняют) воду. Специальными исследованиями с применением меченых атомов удалось установить, что в процессе синтеза атом О, входящий в состав образующейся воды, отрывается от кислоты (отмечено красной пунктирной рамкой), а не от спирта (нереализующийся вариант выделен синей пунктирной рамкой).

По такой же схеме получают сложные эфиры неорганических кислот, например, нитроглицерин (рис. 5Б). Вместо кислот можно использовать хлорангидриды кислот, метод применим как для карбоновых (рис. 5В), так и для неорганических кислот (рис. 5Г).

Взаимодействие солей карбоновых кислот с галоидалкилами RCl также приводит к сложным эфирам (рис. 5Г), реакция удобна тем, что она необратима – выделяющаяся неорганическая соль сразу удаляется из органической реакционной среды в виде осадка.

Применение сложных эфиров.

Этилформиат НСООС2Н5 и этилацетат Н3СООС2Н5 используются как растворители целлюлозных лаков (на основе нитроцеллюлозы и ацетилцеллюлозы).

Сложные эфиры на основе низших спиртов и кислот (табл. 1) используют в пищевой промышленности при создании фруктовых эссенций, а сложные эфиры на основе ароматических спиртов – в парфюмерной промышленности.

Из восков изготавливают политуры, смазки, пропиточные составы для бумаги (вощеная бумага) и кожи, они входят и в состав косметических кремов и лекарственных мазей.

Жиры вместе с углеводами и белками составляют набор необходимых для питания пищевых продуктов, они входят в состав всех растительных и животных клеток, кроме того, накапливаясь в организме, играют роль энергетического запаса. Из-за низкой теплопроводности жировой слой хорошо предохраняет животных (в особенности, морских – китов или моржей) от переохлаждения.

Животные и растительные жиры представляют собой сырье для получения высших карбоновых кислот, моющих средств и глицерина (рис. 4), используемого в косметической промышленности и как компонент различных смазок.

Нитроглицерин (рис. 4) – известный лекарственный препарат и взрывчатое вещество, основа динамита.

На основе растительных масел изготавливают олифы (рис. 3), составляющие основу масляных красок.

Эфиры серной кислоты (рис. 2) используют в органическом синтезе как алкилирующие (вводящие в соединение алкильную группу) реагенты, а эфиры фосфорной кислоты (рис. 5) – как инсектициды, а также добавки к смазочным маслам.

Михаил Левицкий

www.krugosvet.ru