Синтезы на основе малонового эфира, кислоты Мельдрума и ацетоуксусного эфира (стр. 1 из 2). Получение янтарной кислоты из малонового эфира


Синтезы с малоновым и ацетоуксусным эфирами

Образование енолят-ионов 1,3-дикарбонильных соединений - малонового эфира, ацетоуксусного эфира и других 1,3-кетоэфиров облег­чается при наличии двух электроноакцепторных заместителей - кар­бонильной и карбалкоксильной групп. Енолят-ионы малонового и ацетоуксусного эфира обладают более высокой стабильностью по сравнению с енолят-ионами кетонов и сложных эфиров одноосновных кислот вследствие более эффективной делокализации заряда с помощью обоих акцепторных заместителей. Это отражается на низкой величине рКа этих соединений. Щелочные соли малонового эфира и 1,3-кетоэфиров количественно получаются из исходных С-Н кислот с помощью самых разнообразных оснований: СН3СН2ONа; (СН3)3СОК; NаН, КН, ЛДА и др. в спирте или в апротонной среде и легко могут быть выделены в индивидуальном виде и храниться в течение длительного времени. Щелочные еноляты малонового эфира подвергаются региоспецифическому С-алкилированию под действием первичных и вторичных алкилгалогенидов и сульфонатов. Третичные алкилгалогениды непригодны, так как для них единственным направлением реакции становится элиминирование. Как и следует ожидать для ти­пичных SN2-процессов, выход С-алкилпроизводных для алкилирующих агентов с первичной алкильной группой оказывается выше, чем для вторичных алкилгалогенидов. В классическом варианте синтезов с малоновым эфиром натриевый енолят малонового эфира алкилируют алкилгалогенидом в абсолютном спирте. Однако в диполярных апротонных растворителях ДМФА, ДМСО, ГМФТА, скорость реакции возрастает примерно в тысячу раз, поскольку эти растворители эффективно сольватируют щелочные катионы, но слабо сольватируют анионы. Для того, чтобы свести к минимуму долю продуктов С,С-диалкилирования, в качестве алкилирующего агента целесообразно применять алкилтозилаты и другие алкилсульфонаты вместо алкилбромидов и алкилиодидов. Производные малонового эфира гидролизуются при кипячении с концентрированной соляной кислотой при 110-120 °С с одновремен­ным декарбоксилированием промежуточно образующихся замещенных ма­лоновой кислоты. Ниже приведены некоторые наиболее типичные при­меры получения карбоновых кислот с помощью малонового эфира. Если две вводимые алкильные группы сильно различаются по объему, рекомендуется вводить первой меньшую группу - первичную.

Современная модификация этого классического синтеза заключается в том, что гидролиз диэфиров малоновых кислот осуществляется при нагревании в водном растворе ДМСО в присутствии хлористого натрия. Применение в качестве алкилирующих агентов одного моля дигалогенидов открывает путь к получению циклических соединений в резуль­тате внутримолекулярного алкилирования во второй стадии реакции. Эти реакции имеют особое значение для получения циклобутанкарбоновой и циклопропанкарбоновой кислот.

Наилучшие результаты для получения циклопропанкарбоновой кислоты достигаются при использовании межфазного катализа с переносом реагентов из водной в органическую фазу с помощью хлорида триэтилбензиламмония или N(C4H9)4+Br- при взаимодействии одного моля малонового эфира и одного моля 1,2-дибромэтана.

Алкилирование аниона малонового эфира эфирами a-галогенуксусной кислоты приводит после кислотного гидролиза к янтарной кислоте.

Соответственно, из натриймалонового эфира и эфиров w-галогенкарбоновых кислот получают и другие дикарбоновые кислоты.

Другой, более доступный метод получения дикарбоновых кислот состоит в конденсации двух молей натриймалонового эфира и одного моля дигалогеналкана. Так, из бромистого метилена и натриймалонового эфира получают глутаровую кислоту, из 1,2-дибромэтана - адипиновую, из 1,3-дибромпропана - пимелиновую и т.д. Его применение ограничено лишь доступностью необходимых a,w-дигалогеналканов.

Зависимость С- и О-алкилирования щелочных енолятов ацетоуксусного эфира от природы уходящей группы алкилирующего агента, природы растворителя и противоиона была проанализирована в преды­дущем разделе этой главы. В практическом отношении наиболее важны реакции кислотного и основного гидролиза продуктов С-алкилирования ацетоуксусного эфира. При действии водно-спиртового или водно­го раствора HCl происходит гидролиз сложноэфирной группы с после­дующим декарбоксилированием 1,3-кетокислоты с образованием кето­нов.

К аналогичному результату приводит гидролиз производных ацетоуксусного эфира при обработке разбавленным холодным водным раствором гидроксида натрия. Обе эти реакции известны под назва­нием "кетонного расщепления" 1,3-кетоэфиров. Они применяются в ор­ганическом синтезе для получения кетонов со строго определенным положением карбонильной группы в условиях, исключающих изомериза­цию углеродного скелета.

Синтетические возможности использования ацетоуксусного эфира для получения кетонов или гомологов ацетоуксусного эфира расширились после того, как было установлено, что он легко об­разует дианион при действии таких сильных оснований как бутиллитий, бис(триметилсилил)амид лития или натрия, диизопропиламид лития, гидрид натрия. Дианион ацетоуксусного эфира алкилируется при действии одного эквивалента RX исключительно по более основ­ному и нуклеофильному g-углеродному атому по отношению к сложноэфирной группе.

Другая и более интересная возможность использования этого дианиона в синтезе заключается в последовательном диалкилировании под действием различных алкилирующих агентов.

Кетонное расщепление полученного a,g-диалкилированного производ­ного водной HCl приводит к кетонам несимметричного строения:

Алкилирование дианиона ацетоуксусного эфира дигалогенидами приво­дит к образованию циклических 1,3-кетоэфиров.

В этих же реакциях можно использовать дианионы 1,3-дикетонов.

С-Алкилирование щелочных енолятов ацетоуксусного эфира легко осуществляется под действием первичных алкилбромидов и алкилиодидов. Для вторичных алкилгалогенидов замещение всегда сопровож­дается элиминированием, а третичную алкильную группу этим методом вообще не удается ввести. В подобных случаях предпочтительным ста­новится алкилирование не енолята, а самого енола под действием карбанионов или родственных им соединений. Так, например, a-трет-бутилацетоуксусный эфир получается при взаимодействии ацетоуксусного эфира с комплексом трет-бутилбромида с борфторидом серебра.

В качестве алкилирующего агента удобно использовать комплекс трехфтористого бора со вторичными или третичными спиртами:

studfiles.net

4.2.3 Дикарбоновые кислоты

К классу дикарбоновых кислот относятся соединения, содержащие две карбоксильные группы. Дикарбоновые кислоты подразделяют в зависимости от типа углеводородного радикала:

Номенклатура дикарбоновых кислот аналогична номенклатуре монокарбоновых кислот (часть 2, глава 6.2):

Примеры названия дикарбоновых кислот приведены в таблице 25.

Таблица 25 – Номенклатура дикарбоновых кислот

Структурная формула

Название

тривиальное

систиматическая

радикально-функциональная

щавелевая кислота

этандиовая

кислота

малоновая кислота

пропандиовая

кислота

метандикарбоновая

кислота

янтарная

кислота

бутандиовая

кислота

этандикарбоновая-1,2 кислота

глутаровая кислота

пентандиовая

кислота

пропандикарбоновая-1,3 кислота

адипиновая кислота

гександиовая

кислота

бутандикарбоновая-1,4 кислота

малеиновая кислота

цис-бутендиовая кислота

цис-этилендикарбоновая-1,2 кислота

Продолжение таблицы 25

фумаровая кислота

транс-бутендиовая

кислота

транс-этилендикар-боновая-1,2 кислота

итаконовая кислота

пропен-2-дикарбоновая-1,2 кислота

бутиндиовая

кислота

ацетилендикарбоновая кислота

фталевая кислота

1,2-бензолдикарбоновая кислота

изофталевая кислота

1,3-бензолдикарбоновая кислота

терефталевая кислота

1,4-бензолдикарбоновая кислота

Изомерия. Для дикарбоновых кислот характерны следующие виды изомерии:

Структурная:

Пространственная:

Методы получения дикарбоновых кислот. Дикарбоновые кислоты получают с использованием тех же методов, что и в случае монокарбоновых кислот, за исключением нескольких специальных способов, применимых для отдельных кислот.

Общие способы получения дикарбоновых кислот

  1. Окисление диолов и циклических кетонов:

  1. Гидролиз нитрилов:

  1. Карбонилирование диолов:

  1. Получение щавелевой кислоты из формиата натрия сплавлением его в присутствии твердой щелочи:

  1. Получение малоновой кислоты:

  1. Получение адипиновой кислоты. В промышленности получается при окислении циклогексанола 50 % азотной кислотой в присутствии медно-ванадиевого катализатора:

Физические свойства дикарбоновых кислот. Дикарбоновые кислоты – твердые вещества. Низшие члены ряда хорошо растворимы в воде и лишь незначительно растворяются в органических растворителях. Растворяясь в воде, образуют межмолекулярные водородные связи. Граница растворимости в воде лежит при С6 – С7. Эти свойства кажутся вполне естественными, поскольку полярная карбоксильная группа составляет значительную часть в каждой из молекул.

Таблица 26 – Физические свойства дикарбоновых кислот

Название

Формула

Т.пл. °С

Растворимость при 20 °С,

г/100 г

105×K1

105×K2

Щавелевая

189

9

5400

5,2

Малоновая

136

74

140

0,2

Янтарная

185

6

6,4

0,23

Глутаровая

98

64

4,5

0,38

Адипиновая

151

2

3,7

0,39

Пимелиновая

105

5

3.1

0,37

Пробковая (субериновая)

144

0,2

3,0

0,39

Азелаиновая

106

0,3

2,9

0,39

Себациновая

134

0,1

2,6

0,4

Малеиновая

130,5

79

1000

0,055

Фумаровая

302

0,7

96

4,1

Фталевая

231

0,7

110

0,4

Таблица 27 – Поведение дикарбоновых кислот при нагревании

Кислота

Формула

Ткип., °С

Продукты реакции

Щавелевая

160–180

СО2 + HCOOH

Малоновая

140–160

СО2 + СН3СООН

Янтарная

300

Продолжение таблицы 27

Глутаровая

300

Адипиновая

300

Пимелиновая

300

Фталевая

230

Высокие температуры плавления кислот по сравнению с температурами плавления и кипения спиртов и хлоридов, по-видимому, обусловлены прочностью водородных связей. При нагревании дикарбоновые кислоты разлагаются с образованием различных продуктов.

Химические свойства. У двухосновных кислот сохраняются все общие для карбоновых кислот свойства. Дикарбоновые кислоты превращаются в соли и образуют те же производные, что и монокарбоновые (галогенангидриды, ангидриды, амиды, сложные эфиры), но реакции могут идти как по одной (неполные производные), так и по обеим карбоксильным группам. Механизм реакций образования производных тот же, что и у монокарбоновых кислот.

Двухосновные кислоты обнаруживают также ряд особенностей, обусловленных влиянием двух СООН-групп.

  1. Кислотные свойства. У дикарбоновых кислот по сравнению с предельными одноосновными кислотами повышены кислотные свойства (средние константы ионизации, таблица 26). Причиной этого является не только дополнительная диссоциация по второй карбоксильной группе, поскольку ионизация второго карбоксила протекает значительно труднее и вклад в кислотные свойства второй константы едва заметен.

Электроноакцепторная группа, как известно, вызывает увеличение кислотных свойств карбоновых кислот, так как повышение положительного заряда на карбоксильном атоме углерода способствует усилению мезомерного эффекта р,π-сопряжения, что, в свою очередь, усиливает поляризацию связи О–Н и облегчает ее диссоциацию. Этот эффект выражен тем больше, чем ближе друг к другу расположены карбоксильные группы. Токсичность щавелевой кислоты связана, прежде всего, с ее высокой кислотностью, величина которой приближается к таковой у минеральных кислот. Учитывая индуктивный характер влияния, понятно, что в гомологическом ряду дикарбоновых кислот кислотные свойства резко убывают по мере удаления карбоксильных групп друг от друга.

Дикарбоновые кислоты ведут себя как двухосновные и образуют два ряда солей – кислые (с одним эквивалентом основания) и средние (с двумя эквивалентами):

  1. Реакции нуклеофильного замещения. Дикарбоновые кислоты, подобно монокарбоновым, вступают в реакции нуклеофильного замещения с участием одной или двух функциональных групп и образуют функциональные производные – сложные эфиры, амиды, хлорангидриды.

За счет высокой кислотности самой щавелевой кислоты ее сложные эфиры получают без применения кислотных катализаторов.

3. Специфические реакции дикарбоновых кислот. Взаимное расположение карбоксильных групп в дикарбоновых кислотах существенно влияет на их химические свойства. Первые гомологи, в которых СООН-группы сближены, – щавелевая и малоновая кислоты – способны при нагревании отщеплять оксид углерода (IV), в результате чего удаляется карбоксильная группа. Способность к декарбо-ксилированию зависит от строения кислоты. Монокарбоновые кислоты теряют карбоксильную группу труднее, только при нагревании их солей с твердыми щелочами. При введении в молекулы кислот ЭА заместителей склонность их к декарбоксилированию возрастает. В щавелевой и малоновой кислотах вторая карбоксильная группа выступает в качестве такого ЭА и тем самым облегчает декарбоксилирование.

3.1

3.2

Декарбоксилирование щавелевой кислоты используется как лабо-раторный метод синтеза муравьиной кислоты. Декарбоксилирование производных малоновой кислоты является важным этапом в синтезе карбоновых кислот. Декарбоксилирование ди- и трикарбоновых кислот характерно для многих биохимических процессов.

По мере удлинения углеродной цепи и удаления функциональных групп ослабевает их взаимное влияние. Поэтому следующие два члена гомологического ряда – янтарная и глутаровая кислоты – при нагревании не декарбоксилируются, а теряют молекулу воды и образуют циклические ангидриды. Такой ход реакции обусловлен образованием устойчивого пяти- или шестичленного цикла.

3.3

3.4 Прямой этерификацией кислоты могут быть получены ее полные эфиры, а взаимодействием ангидрида с эквимольным количеством спирта – соответствующие кислые эфиры:

3.4.1

3.4.2

3.5 Получение имидов. Нагреванием аммонийной соли янтарной кислоты получают ее имид (сукцинимид). Механизм этой реакции такой же, как при получении амидов монокарбоновых кислот из их солей:

В сукцинимиде атом водорода в иминогруппе обладает значительной протонной подвижностью, что вызвано электроноакцепторным влиянием двух соседних карбонильных групп. На этом основано получение N-бром-сукцинимида – соединения, широко используемого в качестве бромирую-щего агента для введения брома в аллильное положение:

Отдельные представители. Щавелевая (этандновая) кислота НООС–СООН. В виде солей содержится в листьях щавеля, кислицы, ревеня. Соли и эфиры щавелевой кислоты имеют тривиальное название оксалаты. Щавелевая кислота проявляет восстановительные свойства:

Эта реакция используется в аналитической химии для установления точной концентрации растворов перманганата калия. При нагревании в присутствии серной кислоты происходит декарбоксилирование щавелевой кислоты с последующим разложением образовавшейся муравьиной кислоты:

Качественной реакцией для обнаружения щавелевой кислоты и ее солей служит образование нерастворимого оксалата кальция.

Щавелевая кислота легко окисляется, количественно превращаясь при этом в диоксид углерода и воду:

Реакция настолько чувствительна, что ее используют в объемном анализе для установления титров растворов перманганата калия.

Малоновая (пропандиовая) кислота НООС–СН2–СООН. Содержится в соке сахарной свеклы. Малоновую кислоту отличает значительная протонная подвижность атомов водорода в метиленовой группе, обусловленная электроноакцепторным влиянием двух карбоксильных групп.

Водородные атомы метиленовой группировки настолько подвижны, что могут замещаться на металл. Однако со свободной кислотой это превращение невозможно, так как водородные атомы карбоксильных групп значительно подвижнее и замещаются в первую очередь.

Заместить α-водородные атомы метиленовой группы на натрий возможно, лишь защитив карбоксильные группы от взаимодействия, что позволяет сделать полная этерификация малоновой кислоты:

Малоновый эфир при взаимодействии с натрием, отщепляя водород, образует натрий-малоновый эфир:

Анион Na-малонового эфира стабилизирован сопряжением НЭП атома углерода с π-электронами связей С=О. Na-малоновый эфир, как нуклеофил, легко вступает во взаимодействие с молекулами, содержащими электрофильный центр, например, с галогеналканами:

Пречисленные реакции позволяют использовать малоновую кислоту для синтеза ряда соединений:

Янтарная кислота представляет собой бесцветное кристаллическое вещество с т. пл. 183 °С, растворяется в воде и спиртах. Янтарная кислота и ее производные достаточно доступны и находят широкое применение в органическом синтезе.

Адипиновая (гександиовая) кислота НООС–(СН2)4–СООН. Представляет собой бесцветное кристаллическое вещество с т. пл. 149 °С, мало растворима в воде, лучше – в спиртах. Большое количество адипиновой кислоты идет на изготовление полиамидного волокна нейлона. Благодаря своим кислотным свойствам адипиновая кислота используется в быту для удаления накипи с эмалированной посуды. Она реагирует с карбонатами кальция и магния, переводя их в растворимые соли, и в то же время не портит эмаль, как сильные минеральные кислоты.

studfiles.net

щавелевая, малоновая, янтарная, глутаровая, фталевая кислоты.

Дикарбоновые кислоты — это соединения, в которых две карбоксильные функциональные группы —СООН.

Практически все дикарбоновые кислоты — твердые вещества. Высшие монокарбоновые и дикарбоновые кислоты из-за низкой летучести запаха не имеют. В ряду дикарбоновых алифатических кислот низшие гомологи лучше растворяются в воде, чем высшие.

Нейтральные соли карбоновых кислот называют, перечисляя названия аниона кислоты и катиона (в родительном падеже). Названия анионов кислот, в свою очередь, образуются заменой суффикса -ил в названии ацильного ради­кала на –am. Анион, полученный из названия кислоты с суффиксом -карбоно­вая кислота, называется R-карбоксилат.

Кислые соли дикарбоновых кислот называют аналогично нейтральным. Наличие иона водорода обозначают префиксом гидро- перед названием аниона:

Химические свойства.

Кислотные свойства.

Карбоновые кислоты в целом — слабые кислоты: в водных растворах их соли сильно гидролизованы. Дикарбоновые кислоты образуют два ряда солей — кислые и средние (!). Вследствие затухания индуктивного эффекта второй карбоксильной группы кислотные свойства дикарбоновых кислот (по первой ступени диссоциации) уменьшают­ся по мере удаления карбоксильных групп друг от друга.

Реакции нуклеофильного замещения.

Одну из важнейших групп реакций, характерных для карбоновых кислот, составляют реакции нуклеофильного замещения у sp2-12C карбоксильной группы, в результате которых гидроксильная груп­па замещается на другой нуклеофил. За счет положительного мезомерного эф­фекта гидроксильной группы электрофильность атома углерода карбоксиль­ной группы значительно ниже, чем у атома углерода карбонильной группы альдегидов и кетонов, поэтому реакции нуклеофильного замещения в карбок­сильной группе проводятся в присутствии кислотного катализатора.

В результате этих реакций образуются функциональные производные карбоновых кислот — сложные эфиры, амиды, ангидриды, галогенангидриды и др.

Образование сложных эфиров. В случае сильных карбоновых кислот, таких, как щавелевая (!), му­равьиная, трифтороуксусная, отпадает необходимость добавления минеральной кислоты, так как подобные карбоновые кислоты сами катализируют реакцию:

Образование галогенангидридов (также как у других карбоновых кислот). Для получения хлорангидридов, особенно высококипящих, часто исполь­зуют тионилхлорид SOC12:

Образование ангидридов (!). Ангидриды некоторых дикарбоновых кислот образуются при нагревании их и в отсутствие водоотнимающих средств. Важно, чтобы образующийся цик­лический ангидрид содержал пяти- или шестичленный цикл. Такие ангидри­ды образуют, например, янтарная, глутаровая и фталевая кислоты.

Легко образует ангидрид двухосновная ненасыщенная малеиновая кисло­та (Z-изомер бутендиовой кислоты), тогда как ее Е-изомер — фумаровая кислота — ангидрида вообще не имеет. Тем не менее при нагревании фумаро­вая кислота также превращается в ангидрид, но в малеиновый, предваритель­но изомеризуясь в малеиновую кислоту:

Декарбоксилирование.

В процессе декарбоксилирования карбоновые кислоты отщепляют оксид углерода(IV) и превращаются в соединения разных классов в зависимости от условий проведения реакции.

(!)Дикарбоновые кислоты при нагревании кальциевых, барие­вых, ториевых солей, а также солей железа(II) превраща­ются в циклические кетоны. Хорошие выходы имеют место тогда, когда обра­зуются устойчивые пяти- и шестичленные циклы, тем не менее метод позво­ляет получать и макроциклические кетоны, содержащие до 30 атомов углерода в цикле.

Декарбоксилирование α,β-ненасыщенных и ароматических кислот прово­дят нагреванием их в хинолине в присутствии порошкообразной меди или со­лей меди:

Особенно легко декарбоксилируются цианоуксусная N=CCh3COOH, малоновая НООС-СН2-СООН и производные, 3-оксокарбоновые кислоты — ацетоуксусная СН3СОСН2-СООН, щавелевоуксусная НOОС-СОСН2-СООН, ацетондикарбоновая НООС-СН2СОСН2-СООН.

Представители:

Щавелевая кислота — НООС-СООН — простейшая дикарбоновая кисло­та, широко распространена в растительном мире. В виде солей содержится в листьях щавеля, кислицы, ревеня. Нерастворимая кальциевая соль является составной частью почечных камней.

Щавелевая кислота— одна из самых сильных органических кислот, соли и эфиры ее имеют название оксалаты. При нагревании щавелевой кислоты с хлоридом фосфора(V) образуется оксалилхлорид (полный хлорангидрид), используемый в препаративной органиче­ской химии для получения хлорангидридов других карбоновых кислот:

В промышленности щавелевую кислоту получают из формиата натрия:

Щавелевая кислота проявляет восстановительные свойства: в кислом рас­творе окисляется перманганатом калия в оксид углерода(IV). Эта реакция ис­пользуется в аналитической химии для установления точной концентрации рас­творов перманганата калия (качественная реакция). На восстановительных свойствах щавелевой кис­лоты основан способ удаления буро-коричневых пятен от перманганата калия.

При нагревании в присутствии серной кислоты сначала происходит декарбоксилирование щавелевой кислоты, а затем разложение образовавшейся из нее муравьиной кислоты:

Качественной реакцией для обнаружения щавелевой кислоты и ее солей служит образование нерастворимого оксалата кальция (качественная реакция).

Малоновая кислота — НООС-СН2-СООН — вещество, выделенное из сока сахарной свеклы. В промышленности малоновую кислоту получают из хлоро­уксусной кислоты.

Большое практическое значение имеет диэтиловый эфир малоновой кис­лоты, называемый просто малоновым эфиром, который широко применяют в синтезе карбоновых кислот. Малоновый эфир за счет двух электроноакцеп­торных групп, связанных с α-атомом углерода, обладает СН-кислотными свойствами. Анион малонового эфира является нукле­офилом.

Янтарная кислота — НООС-(СН2)2-СООН — впервые выделена из продуктов сухой перегонки янтаря, откуда и получила свое название. Соли и эфиры янтарной кислоты имеют название сукцинаты. Янтарная кислота — промежуточный продукт биологического расщепления белков, углеводов и жиров.

Глутаровая кислота (пентандиовая кислота) — НООС-(СН2)3-СООН — двухосновная предельная карбоновая кислота. Используется в производстве полимеров, типа полиэстера и полиамидов.

Кето-производное глутаровой кислоты — α-кетоглутаровая кислота (α-кетоглутарат) является важным биологическим соединением. Эта кетокислота образуется при дезаминировании глутамата, и является одним из промежуточных продуктов цикла Кребса.

Фталевая кислота — в промышленности получается гидролизом фталевого ангидрида, который в свою очередь образуется при каталитическом окис­лении о-ксилола или нафталина кислородом воздуха.

Фталевая кислота при нагревании легко отщепляет воду и превращается во фталевый ангидрид. Именно фталевый ангидрид, а не сама кислота, служит источником для получения различных производных фталевой кислоты. Более половины производимого в мире фталевого ангид­рида расходуется на получение средних (полных) эфиров фталевой кислоты — диметил-, диэтил- и диоктилфталатов. Эти эфиры добавляют в качестве плас­тификаторов к поливинилхлориду для придания эластичности изделиям из него. Диметилфталат используется как средство, отпугивающее комаров.



infopedia.su

2_Osnovy_Stroenia_I_Reaktsionnoy_Sposobnosti_Ug_1 - Стр 6

Для анилидов и других амидов с электроноакцепторными заместителями у атома азота распад тетраэдрического интермедиата (I) может проходить через образование дианиона (II):

Расщепление азотистой кислотой. При взаимодействии с азотистой кис­лотой и другими нитрозирующими агентами амиды превращаются в соответ­ствующие карбоновые кислоты с выходами до 90%:

Дегидратация. Незамещенные амиды под действием оксида фосфора(V) и некоторых других реагентов (РОС13, РС15, SOCl2) превращаются в нитрилы:

  1. Карбоновые кислоты: галогенирование по Геллю-Фольгарду-Зелинскому, использование реакции для синтеза -гидрокси и -аминокислот.

Галогенирование алифатических карбоновых кислот.

Алифатические карбоновые кислоты галогенируются в α-положение хло­ром или бромом в присутствии каталитических количеств красного фосфора или галогенидов фосфора (реакция Гелля-Фольгарда-Зелин­ского). Например, при бромировании гексановой кислоты в присутствии красного фосфора или хлорида фосфора(III) с высоким выходом образуется 2-бромогексановая кислота, например:

Бромированию подвергается не сама карбоновая кислота, а образующий­ся из нее in situ хлорангидрид. Хлорангидрид обладает более сильными, чем карбоновая кислота, СН-кислотными свойствами и легче образует енольную форму.

Енол (I) присоединяет бром с образованием галогенопроиз­водного (II), которое в дальнейшем отщепляет галогеноводород и превращает­ся в α-галогенозамещенный галогенангидрид (III). На последнем этапе проис­ходит регенерирование галогенангидрида незамещенной карбоновой кислоты.

Из образующихся α-галогенозамещенных кислот с помощью реакций нук­леофильного замещения синтезируют другие гетерофункциональные кислоты.

  1. Дикарбоновые кислоты: специфические свойства. Представители: щавелевая, малоновая, янтарная, глутаровая, фталевая кислоты.

Дикарбоновые кислоты — это соединения, в которых две карбоксильные функциональные группы —СООН.

Практически все дикарбоновые кислоты — твердые вещества. Высшие монокарбоновые и дикарбоновые кислоты из-за низкой летучести запаха не имеют. В ряду дикарбоновых алифатических кислот низшие гомологи лучше растворяются в воде, чем высшие.

Нейтральные соли карбоновых кислот называют, перечисляя названия аниона кислоты и катиона (в родительном падеже). Названия анионов кислот, в свою очередь, образуются заменой суффикса -ил в названии ацильного ради­кала на –am. Анион, полученный из названия кислоты с суффиксом -карбоно­вая кислота, называется R-карбоксилат.

Кислые соли дикарбоновых кислот называют аналогично нейтральным. Наличие иона водорода обозначают префиксом гидро- перед названием аниона:

Химические свойства.

Кислотные свойства.

Карбоновые кислоты в целом — слабые кислоты: в водных растворах их соли сильно гидролизованы. Дикарбоновые кислоты образуют два ряда солей — кислые и средние (!). Вследствие затухания индуктивного эффекта второй карбоксильной группы кислотные свойства дикарбоновых кислот (по первой ступени диссоциации) уменьшают­ся по мере удаления карбоксильных групп друг от друга.

Реакции нуклеофильного замещения.

Одну из важнейших групп реакций, характерных для карбоновых кислот, составляют реакции нуклеофильного замещения у sp2-12C карбоксильной группы, в результате которых гидроксильная груп­па замещается на другой нуклеофил. За счет положительного мезомерного эф­фекта гидроксильной группы электрофильность атома углерода карбоксиль­ной группы значительно ниже, чем у атома углерода карбонильной группы альдегидов и кетонов, поэтому реакции нуклеофильного замещения в карбок­сильной группе проводятся в присутствии кислотного катализатора.

В результате этих реакций образуются функциональные производные карбоновых кислот — сложные эфиры, амиды, ангидриды, галогенангидриды и др.

Образование сложных эфиров. В случае сильных карбоновых кислот, таких, как щавелевая (!), му­равьиная, трифтороуксусная, отпадает необходимость добавления минеральной кислоты, так как подобные карбоновые кислоты сами катализируют реакцию:

Образование галогенангидридов (также как у других карбоновых кислот). Для получения хлорангидридов, особенно высококипящих, часто исполь­зуют тионилхлорид SOC12:

Образование ангидридов (!). Ангидриды некоторых дикарбоновых кислот образуются при нагревании их и в отсутствие водоотнимающих средств. Важно, чтобы образующийся цик­лический ангидрид содержал пяти- или шестичленный цикл. Такие ангидри­ды образуют, например, янтарная, глутаровая и фталевая кислоты.

Легко образует ангидрид двухосновная ненасыщенная малеиновая кисло­та (Z-изомер бутендиовой кислоты), тогда как ее Е-изомер — фумаровая кислота — ангидрида вообще не имеет. Тем не менее при нагревании фумаро­вая кислота также превращается в ангидрид, но в малеиновый, предваритель­но изомеризуясь в малеиновую кислоту:

Декарбоксилирование.

В процессе декарбоксилирования карбоновые кислоты отщепляют оксид углерода(IV) и превращаются в соединения разных классов в зависимости от условий проведения реакции.

(!) Дикарбоновые кислоты при нагревании кальциевых, барие­вых, ториевых солей, а также солей железа(II) превраща­ются в циклические кетоны. Хорошие выходы имеют место тогда, когда обра­зуются устойчивые пяти- и шестичленные циклы, тем не менее метод позво­ляет получать и макроциклические кетоны, содержащие до 30 атомов углерода в цикле.

Декарбоксилирование α,β-ненасыщенных и ароматических кислот прово­дят нагреванием их в хинолине в присутствии порошкообразной меди или со­лей меди:

Особенно легко декарбоксилируются цианоуксусная N=CCh3COOH, малоновая НООС-СН2-СООН и производные, 3-оксокарбоновые кислоты — ацетоуксусная СН3СОСН2-СООН, щавелевоуксусная НOОС-СОСН2-СООН, ацетондикарбоновая НООС-СН2СОСН2-СООН.

Представители:

Щавелевая кислота — НООС-СООН — простейшая дикарбоновая кисло­та, широко распространена в растительном мире. В виде солей содержится в листьях щавеля, кислицы, ревеня. Нерастворимая кальциевая соль является составной частью почечных камней.

Щавелевая кислота— одна из самых сильных органических кислот, соли и эфиры ее имеют название оксалаты. При нагревании щавелевой кислоты с хлоридом фосфора(V) образуется оксалилхлорид (полный хлорангидрид), используемый в препаративной органиче­ской химии для получения хлорангидридов других карбоновых кислот:

В промышленности щавелевую кислоту получают из формиата натрия:

Щавелевая кислота проявляет восстановительные свойства: в кислом рас­творе окисляется перманганатом калия в оксид углерода(IV). Эта реакция ис­пользуется в аналитической химии для установления точной концентрации рас­творов перманганата калия (качественная реакция). На восстановительных свойствах щавелевой кис­лоты основан способ удаления буро-коричневых пятен от перманганата калия.

При нагревании в присутствии серной кислоты сначала происходит декарбоксилирование щавелевой кислоты, а затем разложение образовавшейся из нее муравьиной кислоты:

Качественной реакцией для обнаружения щавелевой кислоты и ее солей служит образование нерастворимого оксалата кальция (качественная реакция).

Малоновая кислота — НООС-СН2-СООН — вещество, выделенное из сока сахарной свеклы. В промышленности малоновую кислоту получают из хлоро­уксусной кислоты.

Большое практическое значение имеет диэтиловый эфир малоновой кис­лоты, называемый просто малоновым эфиром, который широко применяют в синтезе карбоновых кислот. Малоновый эфир за счет двух электроноакцеп­торных групп, связанных с α-атомом углерода, обладает СН-кислотными свойствами. Анион малонового эфира является нукле­офилом.

Янтарная кислота — НООС-(СН2)2-СООН — впервые выделена из продуктов сухой перегонки янтаря, откуда и получила свое название. Соли и эфиры янтарной кислоты имеют название сукцинаты. Янтарная кислота — промежуточный продукт биологического расщепления белков, углеводов и жиров.

Глутаровая кислота (пентандиовая кислота) — НООС-(СН2)3-СООН — двухосновная предельная карбоновая кислота. Используется в производстве полимеров, типа полиэстера и полиамидов.

Кето-производное глутаровой кислоты — α-кетоглутаровая кислота (α-кетоглутарат) является важным биологическим соединением. Эта кетокислота образуется при дезаминировании глутамата, и является одним из промежуточных продуктов цикла Кребса.

Фталевая кислота — в промышленности получается гидролизом фталевого ангидрида, который в свою очередь образуется при каталитическом окис­лении о-ксилола или нафталина кислородом воздуха.

Фталевая кислота при нагревании легко отщепляет воду и превращается во фталевый ангидрид. Именно фталевый ангидрид, а не сама кислота, служит источником для получения различных производных фталевой кислоты. Более половины производимого в мире фталевого ангид­рида расходуется на получение средних (полных) эфиров фталевой кислоты — диметил-, диэтил- и диоктилфталатов. Эти эфиры добавляют в качестве плас­тификаторов к поливинилхлориду для придания эластичности изделиям из него. Диметилфталат используется как средство, отпугивающее комаров.

  1. СН–кислотные свойства малонового эфира, синтезы на основе малонового эфира.

Малоновая кислота — НООССН2СООН — вещество, выделенное из сока сахарной свеклы.

Большое практическое значение имеет диэтиловый эфир малоновой кис­лоты, называемый просто малоновым эфиром, который широко применяют в синтезе карбоновых кислот. Малоновый эфир за счет двух электроноакцеп­торных групп, связанных с α-атомом углерода, обладает СН-кислотными свойствами (рКа = 13). Под действием сильных оснований, таких, как металлический натрий или этоксид натрия, от молекулы малонового эфира отщепля­ется протон. В образовавшемся анионе заряд делокализован при участии двух соседних сложноэфирных групп.

Анион малонового эфира является нукле­офилом и может быть проалкилирован первичными или вторичными алкилгалогенидами. После гидролиза сложноэфирных групп и декарбоксилирования замещенной малоновой кислоты получается карбоновая кислота, содержащая на два атома углерода больше, чем у исходного галогенида.

С соединениями, обладающими СН-кислотными свойствами, альдегиды и кетоны способны вступать в различные реакции конденсации. Соединение, содержащее подвижный водород, в этих реакциях выступает в качестве нуклео­фильного реагента и называется метиленовой компонентой, а альдегид или кетон — карбонильной компонентой. Реакции присоединения часто сопровож­даются отщеплением воды.

Где Х и У – электроноакцепторные заместители. Реакции конденсации карбонильных соединений протекают в условиях кислотного и основного катализа.

Конденсация альдегидов и кетонов с сильными СН-кислотами. В тех случаях, когда метилено­вая компонента имеет довольно высокую СН-кислотность (рКа = 9-13) конден­сацию типа альдольной можно осуществить при катализе аммиаком или орга­ническими основаниями (алифатическими аминами, аминокислотами, азот­содержащими гетероциклическими соединениями — пиридином, пипериди­ном, хинолином):

В качестве метиленовой компоненты в конденсации, известной как реакция Кнёвенагеля, используют обычно вещества общей фор­мулы X—СН2—Y, где X и (или) Y — сильные электроноакцепторные группы (малоновый эфир).

  1. Фталевая кислота, фталевый ангидрид, фталимид; синтез фенолфталеина, его индикаторные свойства.

Фталевая кислота (бензол-1,2-дикарбоновая) — С6Н4(СООН)2 —получается гидролизом фталевого ангидрида, который в свою очередь образуется при каталитическом окис­лении о-ксилола или нафталина кислородом воздуха.

Кислота →Ангидрид→

Фталевая кислота при нагревании легко отщепляет воду и превращается во фталевый ангидрид. Именно фталевый ангидрид, а не сама кислота, служит источником для получения различных производных фталевой кислоты. Более половины производимого в мире фталевого ангид­рида расходуется на получение средних (полных) эфиров фталевой кислоты — диметил-, диэтил- и диоктилфталатов. Эти эфиры добавляют в качестве плас­тификаторов к поливинилхлориду для придания эластичности изделиям из него. Диметилфталат используется как средство, отпугивающее комаров.

Частным случаем ацилирования по Фриделю-Крафтсу является конден­сация фенола с фталевым ангидридом. Реакция протекает при нагревании с кислотным катализатором (концентрированная серная кислота или хлорид цинка) и приводит к образованию фенолфталеина:

Фенолфталеин применяется в химии как кислотно-основный индикатор, в медицине — как слабительное средство (пурген).

Использование фенолфталеина в качестве индикатора основано на его взаимодейст­вии с разбавленными растворами щелочей (pH >8,5) с образованием окрашенного диани­она хиноидной структуры (III), процесс возникновения которого можно представить сле­дующим образом:

Под действием щелочи в бесцветном фенолфталеине происходит размыкание (гидро­лиз) γ-лактонного кольца, и возникший бесцветный спирт (I) самопроизвольно отщепляет молекулу воды с образованием мононатриевой соли (II) желтого цвета. Дальнейшее взаи­модействие со щелочью приводит к образованию динатриевой соли (III) и к углублению ок­раски до малиновой, что обусловлено удлинением цепи сопряжения (хиноидный фрагмент выделен цветом).

В сильнощелочной среде (pH >10) наблюдается обесцвечивание раствора в результате перехода динатриевой соли (III) в тринатриевую соль (IV), в которой кольца не сопряжены между собой.

Из дикарбоновых кислот или их ангидридов получают циклические ими­ды. Легче образуются имиды с пятичленным циклом:

Для синтеза о-аминобензойной (антраниловой) кислоты удобнее исполь­зовать фталевый ангидрид, из которого щелочным гидролизом в присутствии аммиака получают сначала фталаминовую кислоту. Расщепление последней по Гофману приводит к образованию антраниловой кислоты. Аналогичным расщеплением фталимида антраниловая кислота получается с выходом 84%:

  1. Гидроксикислоты алифатического ряда: номенклатура, химические свойства как гетерофункциональных соединений; специфические реакции  –, β –,  – гидроксикислот; лактоны, лактиды, отношение к гидролизу; представители – молочная, винная, яблочная, лимонная.

Вещества природного происхождения часто представляют собой гетерофункционалъные соединения, в молекулах которых имеются различные функциональные группы. В роли таких групп ча­ще выступают гидроксильная, карбонильная, карбоксильная, а также амино­группа. Гетерофункциональные соединения, на­ряду с полифункциональными, играют важную роль в биологических процес­сах и часто представляют собой действующее начало лекарственных средств.

Различные комбинации только двух функциональных групп приводят к гетерофункциональным классам. Разумеется, возможны и другие сочетания функциональных групп.

В первом приближении химические свойства гетерофункциональных со­единений представляют собой сумму свойств, обусловленных каждой группой в отдельности. Однако во многих случаях наличие различных функциональных групп приводит к усилению или ослаблению свойств, прису­щих монофункциональным соединениям, и, что более важно, вызывает появ­ление специфических химических свойств, присущих только гетерофункциональным соединениям.

Гидроксикислотам и называются соединения, в молекулах которых содержатся гидроксильная и карбоксильная группы. Эти функциональные группы могут быть присоединены к алифатической цепи (алифатические гидроксикислоты) или к ароматическому кольцу, в последнем случае используют иногда родовое название фенолокислоты.

По взаимному расположению функциональных групп различают α-, β-, γ-, δ-гидроксикислоты и т. д. Буквы греческого алфавита указывают положе­ние гидроксильной группы относительно карбоксильной, причем отсчет ве­дется от ближайшего к карбоксильной группе атома углерода, т. е. от атома С-2. Следует обратить внимание на то, что в заместительной номенклатуре ИЮПАК для замещенных карбоновых кислот локанты α-, β-, γ- и т. д. не употребляются.

Систематические названия гидроксикислот строятся по общим принци­пам заместительной номенклатуры. Однако для ряда широко распро­страненных представителей предпочтительными являются тривиальные на­звания (в скобках):

Химические свойства.

Специфические свойства гидроксикислот обусловлены принадлежностью этих соединений одновременно к спиртам и карбоновым кислотам и во мно­гом зависят от взаимного расположения функциональных групп.

Образование лактонов.

Лактонами называются внутренние сложные эфиры гидроксикислот, т. е. соединения, в которых сложноэфирная группировка —С(О)О— включена в циклическую структуру.

При нагревании в кислой среде, а иногда просто при стоянии в растворе, γ- и δ-гидроксикислоты подвергаются внутримолекулярной этерификации с об­разованием пяти- и шестичленных лактонов, например:

Легкость лактонизации γ- и δ-гидроксикислот объясняется повышенной термодинамической устойчивостью пяти- и шестичленных циклических соеди­нений. Циклы меньшего или большего размера в этих условиях не образуются.

По номенклатуре ИЮПАК лактоны, образованные из алифатических кис­лот, называют, добавляя суффикс -олид к названию углеводорода с тем же чис­лом атомов углерода. Цифрой указывают место замыкания цикла, начиная ну­мерацию от карбонильного атома углерода. Так, приведенный выше γ-бутиролактон имеет систематическое название 4-бутанолид. Допускаются (и даже чаще используются) общепринятые названия, про­исходящие от тривиальных названий соответствующих негидроксилированных кислот. В этом случае место замыкания цикла обозначается греческими буквами. Оба типа номенклатуры показаны в приведенных ниже примерах:

Хотя гидроксикислоты с более удаленной гидроксильной группой не об­разуют лактонов в рассмотренных выше условиях, при применении специаль­ных мер их лактонизация становится возможной. Такие условия заключаются в удалении воды из сферы реакции для смещения равновесия вправо и в ис­пользовании очень низких концентраций субстрата для предотвращения протекания межмолекулярной этерификации. Этим путем был синтезирован макроциклический лактон растительного происхождения тибетолид.

Лактонам присущи многие свойства сложных эфиров. Так, при нагрева­нии со щелочами или кислотами, а иногда и просто в водном растворе, они гидролизуются в соответствующие гидроксикислоты. Аналогично сложным эфирам щелочной гидролиз лактонов необратим, тогда как в кислой среде ɛ- и особенно γ-гидроксикислоты находятся в равно­весии с лактонами. Наибольшую устойчивость к гидролизу проявляют γ-лактоны.

Образование лактидов.

Лактидами называются циклические эфиры, построенные из двух и более остатков гидроксикислот (необязательно α-гидроксикислот). α-Гидроксикислоты не способны образовывать лактоны (трехчленные α-лактоны вообще не известны). Тем не менее при нагревании этих кислот в результате межмолекулярной этерификации образуется димерный продукт, легко превращающийся в более устойчивый шестичленный циклический диэфир — лактид:

Название лактидов включает корень тривиального латинского названия гидроксикислоты, суффикс -ид и умножающий префикс ди-, три- и т. д., ука­зывающий число молекул, образующих лактид. Например, дигликолид — от гликолевой кислоты, дилактид, дисалицид и трисалицид — от салициловой кислоты (однако префикс ди- час­то опускается):

По химическим свойствам лактиды подобны сложным эфирам. При кипя­чении с водой или щелочами они легко гидролизуются в гидроксикислоты. Гликолид и лактид при 150-220 °С в присутствии катализаторов превращают­ся в линейные полиэфиры — полигликолид и полилактид соответственно:

Оба полимера как сложные эфиры гидро­лизуются в щелочной и кислой средах и медленно — в водной среде. Послед­нее свойство позволяет использовать эти полимеры в медицине как рассасы­вающиеся материалы (хирургические нити, лекарственные капсулы, носители лекарств и др.).

Реакции элиминирования.

При нагревании или под действием минеральных кислот β-гидроксикислоты легко подвергаются дегидратации с образованием α,β-ненасыщенных кислот:

Внутри- или межмолекулярная этерификация в этом случае невозможна, так как привела бы к образованию неустойчивого четырех- или восьмичлен­ного цикла (лактона и лактида соответственно).

Направленность реакции определяется большей подвижностью атома во­дорода в α-положении по сравнению с γ-положением, хотя в некоторых случа­ях изомерные β,γ-ненасыщенные кислоты также образуются.

Образование β-лактонов из β-гидроксикислот возможно только под дей­ствием сильных дегидратирующих агентов, таких, как карбодиимиды:

В щелочной среде β-гидроксикислоты претерпевают ретроальдольное рас­щепление, характерное для альдолей, что приводит к образованию альдегида (или кетона) и карбоновой кислоты:

Своеобразному элиминированию — отщеплению муравьиной кислоты — подвергаются α-гидроксикислоты при кипячении с разбавленными минераль­ными кислотами:

Нагревание α-гидроксикислот с концентрированной серной кислотой также приводит к образованию карбонильных соединений с одновременным элиминированием монооксида углерода и воды — продуктов разложения му­равьиной кислоты.

Представители.

Молочная кислота — СН3СН(ОН)СООН — была впервые обнаружена в прокисшем молоке, отсюда и получила название. Многие квашеные продукты также содержат молочную кислоту, образующуюся в результате молочнокислого брожения са­харистых веществ.

Благодаря наличию в молекуле асимметрического атома углерода молоч­ная кислота может существовать в виде двух оптически активных энантиомеров — D- и L-форм — и оптически неактивной рацемической формы. Последняя представляет собой молочную кислоту броже­ния. L(+)-Молочная кислота, образуется в мышеч­ной ткани как продукт расщепления и дальнейшего превращения полисахари­да гликогена. D(-)-Молочная кислота может быть получена под действием микроорганизмов, например, Lactobacillus leishmanii или Escherichia coli. Соли и сложные эфиры молочной кислоты называются лактатами.

Яблочная кислота — НООС-СН2СН(ОН)-СООН — представитель гидроксидикарбоновых кислот. Яблочная кислота, как и молочная, существует в виде двух энантиомеров и рацемата. Следует обратитьвнимание на то, что рацемат яблочной кислоты плавится при более высокой температуре, чем сами L- и D-формы, т. е. он представляет собой индивидуаль­ное вещество, а не механическую смесь энантиомеров. L(-)-Яблочная кисло­та, содержится в незрелых яблоках, плодах рябины и барбариса. Примечательно, что удельное вращение яблочной кислоты в водных растворах сильно зависит от концентрации. Так, L-энантиомер в растворах с массовой долей ниже 34% левовращающий, а выше — правовращающим.

Синтетическую (±)-яблочную кислоту получают либо гидролизом бромо- или хлороянтарной кислоты, либо гидратацией малеиновой или фумаровой кислоты, например. Аналогичная реакция протекает и в организме. При этом фумаровая кис­лота гидратируется с образованием L-яблочной кислоты.

studfiles.net

5.2. Свойства дикарбоновых кислот

По химическим свойствам дикарбоновые кислоты очень похожи на монокарбоновые кислоты. Однако наличие двух карбоксильных групп придает некоторую специфику этому классу.

Дикарбоновые кислоты, в которых карбоксильные группы расположены достаточно близко друг к другу, проявляют более сильные кислотные свойства, чем монокарбоновые кислоты, за счет электроноакцепторного воздействия карбоксильных групп друг на друга. Так, например, рКащавелевой кислоты составляет 1,27, малоновой – 2,86, янтарной и глутаровой кислот – 4,21 и 4,34, соответственно.

Дикарбоновые кислоты в зависимости от расстояния между карбоксильными группами по-разному ведут себя при нагревании. Щавелевая и малоновая кислоты подвергаются декарбоксилированию с образованием муравьиной и уксусной кислот, соответственно.

При более отдаленном расположении карбоксильных групп для соответствующих дикарбоновых кислот возникает возможность внутримолекулярной дегидратации с образованием циклических ангидридов. Это происходит, однако, только тогда, когда образующийся цикл является устойчивым. Поэтому такое поведение при нагревании характерно для таких дикарбоновых кислот, ангидриды которых являются пяти- или шестичленными циклическими соединениями, например, для янтарной и глутаровой кислот.

янтарный ангидрид

глутаровый ангидрид

По отношению к нагреванию можно различить изомерные малеиновую и фумаровую кислоты. Первая при нагревании отщепляет воду и превращается в малеиновый ангидрид, а вторая из-за транс-расположения карбоксильных групп не способна к такой дегидратации, и с ней при нагревании не происходит никакого химического превращения.

малеиновая малеиновый фумаровая кислота

кислота ангидрид

Из бензолдикарбоновых кислот только фталевая кислота подвергается дегидратации при нагревании.

фталевый ангидрид

5.3. Малоновый эфир

Из производных дикарбоновых кислот особое значение имеет диэтиловый эфир малоновой кислоты, который часто называют просто малоновым эфиром. Малоновый эфир получают реакцией этерификации малоновой кислоты с этиловым спиртом.

Малоновый эфир применяют в синтезе многих органических соединений, в том числе и карбоновых кислот, используя при этом его С-Н-кислотные свойства, а также способность малоновой кислоты к декарбоксилированию.

Малоновый эфир является достаточно сильной С-Н-кислотой, поскольку сопряженное ему основание стабилизировано двумя сложноэфирными группами, проявляющими –М-эффект. Депротонировать малоновый эфир можно различными основаниями, например, этилат натрия превращает его в так называемый натрмалоновый эфир.

Натрмалоновый эфир представляет собой С-нуклеофил, который может быть подвергнут алкилированию с помощью алкилгалогенида по механизму SN2 с образованием алкилзамещенного малонового эфира. Этот эфир кислотным гидролизом переводят в алкилзамещенную малоновую кислоту, при нагревании которой в результате декарбоксилирования образуется карбоновая кислота, которую можно рассматривать как алкилзамещенную уксусную кислоту.

Поскольку алкизамещенный малоновый эфир содержит еще один подвижный атом водорода, то процесс алкилирования можно повторить и получить диалкилзамещенный малоновый эфир. При этом алкилировать можно как тем же алкилгалогенидом, так и другим. В результате после гидролиза и декарбоксилирования можно получить дизамещенную уксусную кислоту. Например, 2-метилбутановую кислоту можно получить из малонового эфира, проалкилировав его дважды – сначала метилгалогенидом, а потом этилгалогенидом.

studfiles.net

Малоновый синтез - Справочник химика 21

    R— Hj— Hj—СООН + СО2 (Малоновый синтез) [c.321]

    Все синтезы с участием малонового эфира получили название малоновый синтез . [c.513]

    Большой вклад в изучение путей синтеза и свойств циклических соединений внес в 80—90-х годах Перкин (молодой в то время химик, работавший в лаборатории Байера). Для синтеза полиметиленовых соединений Перкин воспользовался незадолго до того открытым методом малонового синтеза. [c.316]

    Ряд циклобутана. — Первое соединение этого ряда, диэтило- вый эфир циклобутандикарбоново [-1,1 кислоты I, было получено Перкино м мл. путем малонового синтеза (1887). В результате омыления и пиролиза замещенной малоновой кислоты И была получена циклобутанкарбоновая кислота III, но дал1)Нейшие попытки Перкина превратить ее в циклоалкан, лежащий в основе всего ряда, оказались безуспешными, так как при пиролизе кальциевой соли этой кислоты получался только этилен. Синтез циклобутана был впервые осуществлен с низкими выходами Вильштеттером (1907 следующим многостадийным путем. Синтезированная Перкином монокарбоновая кислота III была превращена через хлорангидрид п амид IV в амин V, из которого исчерпывающим метилированием был получен иодметилат VI, переведенный затем в четвертичное основание VII в результате гофманов-ского расщепления VII был получен циклобутен VIII, при осторожном гидрировании которого образовался циклобутан IX и бутадиен. [c.31]

    Эти кислоты синтезированы Перкиным мл. (1892), применившим для этой цели малоновый синтез. Позже сам циклогексан был синтезирован гидрированием бензола (Сабатье и Сандеран, 1901). Объективные доказательства строения были получены физическими методами исследования. [c.114]

    Малоновый синтез (цель — образование разветвленных или нераз-ветвленных кислот с удлинением цени на два углеродных атома) разд. 2, А, реакция 12. [c.327]

    Малоновый синтез в этих условиях двойного алкилирования проводят со смесью 4 бромидов. [c.331]

    КИСЛОТЫ, амины и многие другие типы органических соединений. Через нитрилы или реактив Гриньяра могут быть получены соответствующие уксусные кислоты. Малоновый синтез открывает путь к (З-арилпропионовым кислотам. [c.79]

    XIV. 6. 1) Приведите последовательность реакций при синтезе 2-метилпропионовой кислоты с помощью малонового синтеза, исходя из бромистого метила в качестве галогенида. [c.330]

    Синтез на основе таких преврашений малонового эфира называется малоновым синтезом. [c.346]

    Триптофан стал широко доступен благодаря сочетанию реакции Манниха и малонового синтеза. Пользуясь реакцией Манниха из индола, формальдегида и диметиламина, получают индолилдиметиламиноме-тан—грамин, обладающий реакционной способностью, аналогичной реакционной способности галоидалкила. Его вводят в конденсацию с ацетиламиномалоновым эфиром и продукт реакции гидролизуют. [c.451]

    Разнообразие методов синтеза пептидов дало возможность получать пептиды самого различного состава и с любой последовательностью аминокислот. Однако, применение всех этих методов синтеза тре-.бует освоения большого числа разных реакций. Неудивительно поэтому, что исследователи стремятся найти такой синтез, который позволил бы получать пептиды одним общим путем, подобно тому, как большинство аминокислот можно получать малоновым синтезом. Недавно было показано, что универсальным, по-видимому, является кар-бодиимидный метод. Он позволяет нанизывать аминокислотные остатки с карбоксильного конца пептидов или соединять между собою пептиды различной длины и состава без предварительной активации карбоксильной группы. [c.496]

    Для стереоспецифического синтеза аминокислот с помощью хиральных реагентов имеются многочисленные возможности. Из них следует упомянуть асимметрическое гидрирование ненасыщенных соединений с хиральными катализаторами — фосфинами родия и рутения [71] или фосфиновыми лигандами, фиксированными на полимере [72], асимметрическое декарбокси-лирование спещ1фических комплексов малоната кобальта (III) при малоновом синтезе, переаминирование а-кетокислот с L-пролином в качестве хирального реагента и асимметрическое алкилирование шиффовых оснований [73, 74]. Практическое значение асимметрический синтез имеет в том случае, если он приводит к получению ценных, редких аминокислот, если хи-ральные реагенты не очень дороги или если их можно регенерировать. Проблематичны асимметрические синтезы, протекающие через циангидри-ны или гидантоины, так как при гидролизе приходится считаться с рацемизацией. Об асимметричном синтезе по методу Штрекера сообщается в работе [75]. Ниже приводится пример асимметрического алкилирования шиффова основания /ире/и-бутилового эфира глицина и гидроксипииаиоиа [76]. [c.47]

    Превращение одного соединения в другое достигается с помощью хорошо известных реакций реакции Зелинского—Хелла—Фольгарда, малонового синтеза и циклизации по методу Дикмана. В синтезах, о которых речь шла выше, нет необходимости всегда изолировать промежуточные продукты. [c.204]

    Синтезы алициклических кислот, осуществлеппые Пер-киным [69—72] применительно к получению ряда функциональных соединений, явились классическими универсальными методами. Они основаны па применении обычных условий малонового синтеза. Первой стадией реакции является образование у-галоидопроизводных малонового эфира из 1,3-дигалоидопроизводных и натриймалонового эфира в растворе абсолютного спирта [81]  [c.49]

    Диэфир 76 получали малоновым синтезом, исходя из 1,21-дибромгенэйкозанона-11 [15,91]. В дополнительных экспериментах диэфир 76 превращали в ок-сим 78, который при каталитическом гидрировании над никелем Ренея дает амин 79 из последнего под действием фосгена получали изоцианат 80. Далее предполагалось осуществить реакцию соединения 80 с диамином 75 с последующей циклизацией. Предварительно реакцией изоцианата 80 с диэтиламином получали модельное производное мочевины 81. Поскольку циклизацию этого диэфира под действием натрия в ксилоле [11—13] осуществить не удалось, дальнейших попыток синтеза на основе соединения 80 и макроциклического диамина 75 не предпринималось. [c.52]

    Указанные гомологи прогестерона были получены из 3[ i-oк и-Д -этиo-холеновой кислоты путем малонового синтеза. Другой гомолог, Д -нор-холен-3,22-дион (XV), также физиологически неактивен. Известны оба эпимера этого соединения, полученные при взаимодействии диметилкад- [c.375]

    Первая группа методов использует 1-иод-б-метоксинафталин (2), который может быть получен либо рьз кислоты Клеве (1) [134 —136] (схема 1), либо из 2-аминонафталина (5 стадий, выход 3%) [135]. Атомы углерода Сц—при превращении (2) в (6) вводятся либо последовательно в два приема, либо одновременно в виде четырехуглеродных фрагментов. Реакция гриньяровского производного (2) с полуальдегидом янтарной кислоты и гидрирование метилового эфира образовави1ейся кислоты (4) в -(б-мет-оксинафтил-1)-масляную кислоту (5) является примером одновременного введения Сц — 0 4 атомов [134]. Более удобной, однако, оказалась другая схема синтеза, основанная на двухстадийном введении боковой цепи [137, 138]. Атомы Сц и С а вводятся при реакции гриньяровского производного (2) с окисью этилена, а атомы С з и 0 4 — при малоновом синтезе с бромидом (3). [c.77]

    По методу Робинсона (схемы 26 и 27) сначала синтезируется кислота (272) без ангулярной метильной группы, затем проводится циклизация и на последней стадии — ангулярное метилирование, приводящее исключительно к iu - /D-изомерам. Изменение порядка проведения этих стадий синтеза представляет существенный интерес. Полупродуктами в этом случае слун ат содержащие 18-метильную группу кетоны тина (280), синтез которых описан ниже на схеме 30. Введение при js карбоксиме-тиленового остатка согласно схеме 27 проводится путем гидрирования (280) в насыщенный кетон и бромирования в (282) с последующим малоновым синтезом, гидролизом и декарбоксилированием в метилкетокислоту (286). Циклизация хлорангидрида последней позволяет получить И, 17-дикетон (290) сочленение колец С и D в этом продукте осталось невыясненным. Синтез по этому пути проводился при R = Н, а для соединений с R = ОМе был доведен только до стадии кетона (282) [377, 379, 389, 390]. [c.131]

    Другим методом удлинения углеродной цепи для случая веществ, содержащих галоген у первичного атома углерода, может служить малоновый синтез. Атомы водорода центральной метиленовой группы в диэтиловом эфире малоновой кислоты (пропан-1,3-дикарбоновой кислоты) активируются за счет наличия двух фланкирующих карбэтоксигрупп, и при обработке этого эфира этилатом натрия в сухом этаноле образуется его натриевая соль  [c.316]

chem21.info

Синтезы на основе малонового эфира, кислоты Мельдрума и ацетоуксусного эфира

Синтезы на основе малонового эфира, кислоты

Мельдрума и ацетоуксусного эфира

Карбоновые кислоты, у которых в b-положении по отношению к карбоксильной группе имеются электроноакцепторные группировки, такие как карбонильная группа, сравнительно легко декарбоксилируются:

(30)

Диэтиловый эфир малоновой кислоты чаще всего называютмалоновым эфиром. Его получают из хлоруксусной кислоты по следующей схеме:

Кислота Мельдрума образуется при действии на малоновую кислоту ацетона в присутствии серной кислоты:

(31)

Ацетоуксусный эфир получают конденсацией Клайзена из этилацетата (19) или действием этилового спирта на дикетен.

(32) (33)

В малоновом эфире, кислоте Мельдрума и ацетоуксусном эфире атомы водорода метиленовой группы, находящейся между двумя карбонильными группами, чрезвычайно подвижны. При действии на эти соединения алкоголята натрия, а в случае кислоты Мельдрума и просто щелочи (в этом ее преимущество перед малоновым эфиром) один из атомов водорода замещается на натрий. Натриевые производные этих соединений далее могут реагировать с алкилгалогенидами:

или

(35)

или

(36)

После гидролиза, полученных алкилпроизводных, путем нагревания они могут быть декарбоксилированы:

(37) (38) (39)

Упр.22. Напишите реакции получения (а) малонового эфира, (б) кислоты Мельдрума, (в) ацетоуксусного эфира, (г) ацетилацетона.

Упр.23. Напишите реакции получения из кислоты Мельдрума 4-метилпента-новой (изокапроновой) кислоты.

Ответ:

Упр. 24. Составьте схему синтеза кислоты Мельдрума из уксусной кислоты. Напишите еe реакцию с гидроксидом натрия, а затем с этилбромидом; осуществите гидролиз полученного продуктa с дальнейшим декарбоксилированием.

Упр. 25. Составьте схему синтеза малонового эфира из уксусной кислоты. Напишите формулы промежуточных продуктов. Рассмотрите строение малонового эфира и напишите его реакцию с натрием в спирте, а затем с этилбромидом; осуществите гидролиз полученного продуктa с дальнейшим декарбоксилированием.

Алкилмалоновые эфиры далее могут быть проалкилированы еще раз:

При использовании дигалогенидов из малонового эфира и кислоты Мельдрума можно получать и дикарбоновые кислоты:

Упр. 26. Напишите схемы взаимодействия натриймалонового эфира с:

(а) этилбромидом, (б) этиловым эфиром хлоруксусной кислоты, (в) иодом. Осуществите гидролиз полученных продуктов с дальнейшим декарбоксилирова-нием. Назовите полученные продукты.

Упр. 27. Напишите схему синтеза из малонового эфира: (а) валериановой кислоты, (б) диметилуксусной кислоты, (в) адипиновой кислоты.

Упр. 28. Рассмотрите строение малонового эфира и напишите схемы его взаимодействия с: (а) Н2 О в кислой среде при нагревании; (б) натрием в спирте; (в) уксусным альдегидом в щелочной среде.

Упр. 29. Завершите реакции:

(а)(б)

Использование ацетоуксусного эфира позволяет получать различные как кетоны, так и кислоты, поскольку алкилацетоуксусные эфиры могут претерпевать как кетонное (разбавленной серной кислотой) так и кислотное (концентрированным раствором щелочи) расщепление:

или

(40) (41) (42)

Упр.30. Составьте схему синтеза ацетоуксусного эфира из уксусной кислоты. Напишите формулы промежуточных продуктов. Рассмотрите строение ацетоуксусного эфира и напишите его реакцию с натрием в спирте, а затем с пропилбромидом; осуществите кетонное и кислотное расщепление полученного продуктa.

Упр.31. Напишите реакции получения из ацетоуксусного эфира (а) 2-гексанона, (б) 2,5-гександиона, (в) капроновой кислоты, (г) глутаровой кислоты.

Упр.32. Завершите реакцию:

В присутствии этоксида натрия малоновый эфир реагирует с мочевиной давая барбитуровую кислоту:

(43)

Барбитуровая кислота

Барбитуровая кислота существует в нескольких таутомерных формах:

Барбитуровая кислота немного сильнее уксусной кислоты. Производные барбитуровой кислоты под названием барбитураты используются в качестве снотворных.

веронал фенобарбитал секонал

(5,5-диэтилбарбиту- (5-фенил-5-этилбар- [5-аллил-5-(1-метилбу-

ровая кислота) битуровая кислота) тил)барбитуровая кислота]

Упр.33. Завершите реакцию:

Упр.34. Напишите реакции получения (а) веронала и (б) секонала из малонового эффира, мочевины и других необходимых реагентов.

a , b -Непредельные альдегиды и кетоны

Простейшим непредельным альдегидом является акролеин. В промышленности его получают окислением пропилена:

(44)

Другие a,b-непредельные альдегиды и кетоны могут быть получены альдольной (кротоновой) конденсацией альдегидов и кетонов (10-13).

Ацетоуксусный и малоновый эфиры и кислота Мельдрума конденсируются с альдегидами под действием слабых оснований (конденсация Кновенагеля), например:

(45)

При взаимодействии a,b-непредельных альдегидов и кетонов с нуклеофильными реагентами присоединение может происходить двумя путями.

Магнийорганические соединения дают преимущественно продукты простого присоединения.

(46)

(72%) (20%)

В отличие от реактивов Гриньяра медьорганические и литийдиалкилкупратные соединения образуют почти исключительно продукты сопряженного присоединения.

(47) (85%)

Синильная кислота, вода, аммиак и амины обычно дают продукты сопряженного присоединения.

(48)

Ацетоуксусный и малоновый эфиры и кислота Мельдрума могут и сопряженно присоединяться к непредельным карбонильным соединениям (присоединение Михаэля), например:

mirznanii.com