Эфиры простые. Как получить эфир простой


Простые эфиры. Реакции их получения

    Простые эфиры. Реакции их получения [c.62]

    Получение простых эфиров. Для получения простых эфиров спирты нагревают в присутствии водоотнимающих средств, например, концентрированной серной кислоты. Реакция протекает в две стадии. В первой стадии спирт, например, этиловый — С Н ОН реагирует с серной кислотой, образуя сложный эфир серной кислоты, или этилсульфат  [c.142]

    Простейшим примером этой группы реакций служит получение простых эфиров из индивидуальных спиртов. Образован .диэтилового эфира из этилового спирта является наиболее давно известной реакцией. [c.460]

    В зависимости от условий проведения реакции может быть этерифицировано различное количество ОН-групп целлюлозы. В растворе реакция этерификации целлюлозы протекает с большей скоростью, чем в гетерогенной среде. При гетерогенном процессе замещение ОН-фупп целлюлозы происходит постепенно. Первыми этерифицируются поверхностные и наиболее рыхлые участки целлюлозного субстрата. При этом образуется смесь частично замещенной и непрореагировавшей целлюлозы. При большей продолжительности реакции происходит уменьшение химической неоднородности полученных продуктов в результате замещения ОН-фупп вдоль цепи и между цепями. Основными факторами, определяющими степень этерификации простых эфиров, являются  [c.308]

    Реакции спиртов с образованием сложных и простых эфиров и получение спиртов из сложных эфиров см. упражнения Л 4.5—4.10, 4.20, 4.27, 4.28. [c.39]

    Большое практическое значение приобрел метод получения полимерных простых эфиров, основанный на реакции взаимодействия диолов с эпихлоргидрином по-видимому, в этом процессе чередуются акты конденсации (присоединение эпихлоргидрина с выделением H I) и акты ступенчатой полимеризации (присоединение диола)  [c.408]

    Взаимодействие галогеналканов с алкоголятами и фенолятами натрия ведет к получению простых эфиров (реакция Вильямсона). В качестве растворителя возможно применение спирта и ацетона. Однако лучшим растворителем для этой реакции является диметилформамид. [c.592]

    Получение из галогенопроизводных. При взаимодействии галогенопроизводных с алкоксидами или феноксидами щелочных металлов образуются простые эфиры. Это наиболее важный и распространенный лабораторный способ получения простых эфиров. Реакция протекает как нуклеофильное замещение атома галогена в молекуле галогенопроизводного на алкокси- или арилоксигруппу (см. 5.3.4.2). Ценность этого способа в том, что он позволяет получать несимметричные простые эфиры различного строения. [c.192]

    Третий метод синтеза используют в том случае, если соответствующий галогенид недоступен. Металлическим калием расщепляют простой эфир и полученное металлоорганическое соединение окисляют реакцией с вици- [c.415]

    Производные клетчатки. В связи с нерастворимостью клетчатки наличие свободных гидроксилов нельзя доказать обычной реакцией растворения гидроокиси меди (П), но можно доказать реакциями образования простых и сложных эфиров. Реакция получения некоторых сложных эфиров имеет огромное практическое значение. [c.365]

    Как в случае получения простых эфиров, реакция образования СЛОЖНЫХ эфиров в присутствии серной КИСЛОТЫ протекает в две стадии. В первую стадию образуется алкилсерная кислота во вторую стадию алкилсерная кислота вступает в реакцию с кислотой образуется сложный эфир. Температуру реакции поддерживают не выше 170°. [c.202]

    Производные клетчатки. Естественно, что в связи с почти полной нерастворимостью клетчатки наличие свободных гидроксилов нельзя доказать обычной и хорошо известной нам реакцией растворения гидрата окиси меди. Это можно, однако, доказать, реакциями образования простых и сложных эфиров. Реакции получения некоторых сложных эфиров клетчатки получили большое практическое значение. Особенно большое значение имеют эфиры азотной, уксусной и ксантогеновой кислот. [c.235]

    Окисление более тяжелых углеводородов, начиная с гексана, приводит к образованию весьма сложной смеси продуктов, из которой очень трудно выделить индивидуальные соединения. Поэтому углеводороды тяжелее Се подвергают окислению только в том случае, когда продукт реакции находит применение непосредственно в виде смеси. В самом деле, даже некаталитическое окисление пропана и бутана в паровой фазе при 270—350 " С и давлении от 3,5 до 200 атм приводит к получению очень широкой гаммы продуктов, что наглядно иллюстрируется табл. ХП1 . Помимо продуктов, перечисленных в этой таблице, реакционная смесь содержит кислоты Сх—С4, спирты Сг—С,, кетоны С3—С,, окись этилена, простые эфиры, ацетали, альдоли и т. д. [306, 307]. Соотношение между отдельными соединениями и классами соединений в реакционной смеси может колебаться в широких пределах и зависит от условий реакции. Наибольший выход продуктов окисления соответствует температуре реакции 150—250° С. При более высоких температурах интенсивнее протекают не только реакции окисления, но и реакции крекинга и пиролиза. Так, образование бутиленов достигает максимума нри 375° С, а образование этилена и пропилена — при 700° С (давление во всех случаях атмосферное). С ростом температуры одновременно происходит падение выходов продуктов окисления [307]. [c.585]

    Для разделения олефинов была использована в основном четкая ректификация ожиженных газов под давлением с помощью технических приемов, уже известных в промышленности нефтепереработки единственным новшеством было проведение ректификации при низкой температуре, требующейся для концентрирования этилена. Основными из разработанных процессов химической переработки олефинов были сернокислотная гидратация, приводившая к получению спиртов, которые затем дегидрировались в альдегиды и кетоны, и получение из олефинов их окисей с помощью реакции гипохлорирования. Доступность в промышленных масштабах окиси этилена и окиси пропилена привела к тому, что на рынке стали появляться все новые и новые продукты, получаемые на их основе, например гликоли, сложные и простые эфиры гликолей и алканоламины. [c.19]

    Существует несколько обзоров по получению простых эфиров, наиболее обширный из которых написан Меервейном [89]. В монографии, посвященной химии эфирной связи, имеется раздел [90], лосвященный получению простых эфиров полезную сводку литературы на эту тему дали Бюлер и Пирсон [91] другие примеры синтетических методов можно найти в книгах, посвященных синтезу [92]. В следующих разделах будут обсуждаться некоторые примеры синтеза простых эфиров. Реакции будут сгруппированы по категориям в зависимости от изменения степени окисления атома углерода, образующего новую связь С—О. В некоторых случаях такая классификация является довольно произвольной. Ясно, что синтез любого соединения можно рассматривать как реакцию другого соединения. Поскольку две связи С—О в простых эфирах обычно образуются на различных стадиях синтетической последовательности, большинство синтезов эфиров можно рассматривать как реакции спиртов или их производных (см. гл. 4.1). [c.317]

    Гидролиз алкилгалогенидов для получения спиртов в условиях МФК невыгоден, поскольку при этом в качестве главных продуктов образуются простые эфиры, иногда с довольно хорошими выходами (разд. 3.7). Только в некоторых особых случаях эта реакция гидролиза проходит успешно. Например, гидролиз НзС—С(С1)=СН— h3 I водными растворами гидроксидов щелочных металлов ускоряется аммониевыми солями [225]. При кипячении в бензоле в течение 48 ч соединения А (Х = Вг или С ) с системой водный НаОН/аликват 336 образуется соединение В с выходом 50 или 64% соответственно [246]. Довольно удивительно, что при этом не происходит образования нормальных продуктов реакции Фаворского. В водном NaH Oa с [c.244]

    ВЗЯТЬ не Б большом избытке, нагревание смеси с обратным холодильником приводит к образованию некоторого количества сложного эфира. Сообщение о получении алкилсульфонатов при нагревании сульфохлорида со спиртом [145] показывает, что в данном случае взято эквимолекулярное количество спирта или реакция велась короткое время. н-Пропиловый и н-бутиловый эфиры п-толуолсульфокислоты с выходом 25—30% получены при нагревании с обратным холодильником сульфохлорида с 10%-ным избытком спирта [146]. При пропускании сухого воздуха через смесь п-толуолсульфохлорида и и-пропилового спирта при 100—125° с целью удаления образующегося хлористого водорода [147] получается около 70% сложного и около 5% простого эфиров. К реакционной смеси добавляется небольшое количество углекислого натрия для нейтрализации п-толуолсульфокислоты, могущей образоваться в результате побочной реакции. Другим побочным продуктом является, повидимому, хлористый этил, хотя он и не упоминается в сообщении. При нагревании бензолсульфохлорида и метилового спирта в запаянной трубке до 160° единственными продуктами реакции получаются хлористый метил и бензолсульфокислота [144]. Вторичные и третичные спирты, вероятно, легче превращаются в хлориды при действии сульфохлоридов, чем первичные спирты, однако опытных данных по этому вопросу не имеется. Наличие й-атома хлора в молекуле спирта как будто уменьшает побочные реакции, и при нагревании с обратным холодильником п-толуолсульфохлорида и избытком этиленхлоргидрина образуется не простой эфир или дихлорэтан, а сложный эфир [148]. Такое же действие оказывает цианогруппа — при кипячении ксилольного раствора Р-цианоэтилового. спирта с п-толуолсульфохлоридом в течение нескольких часов образуется соответствующий сложный эфир с выходом 65% [149]. [c.336]

    Все методы синтеза простых эфиров, рассмотренные до сих пор, включают образование связи С—О эфира путем нуклеофильной атаки атомом кислорода по атому углерода с дефицитом электронов. Другим путем получения эфиров служит нуклеофильная атака карбанионоидных реагентов по атому кислорода с дефицитом электронов. Так, реакция реагентов Гриньяра с пероксидами или эфирами перкислот дает простые эфиры. Реакция реагентов Гриньяра, полученных из первичных или вторичных бромидов, с ди-трет-бутилпероксидом дает трег-бутилалкиловые эфиры, однако хороших выходов при этом достичь не удается [120]. Гораздо лучшие выходы получают при реакции реагентов Гриньяра с трет-бутилпербензоатом в мягких условиях по уравнению (48). Ди-грет-бутиловый эфир получают этим методом с выходом 44% [121]. [c.322]

    Примером прямого фторирования простых эфиров служит получение бис-перфторциклогексилового эфира реакцией между окисью дифенила и трехфтористым кобальтом [196]. При этом в значительной степени протекает также фторолиз и образуется перфторциклогексан  [c.129]

    На основе результатов, полученных в предыдущих главах, здесь будет рассмотрена детальная схема простой химической реакции — изомеризации. К таким реакциям относятся цис-транс изомеризация олефинов и некоторые аллильные перегруппировки, например перегруппировка винилаллиловоги эфира [1] СНа = СН—О — СНд — СН = СНз ДО аллилацетальдегида СНз = СН — СНз — СНз — СНО. Было установлено, что эти реакции являются гомогенными и подчиняются уравнению первого порядка. [c.204]

    Он сделал предположение, что в ходе реакции образуются следовые количества Ы,Н,Н, Н -тетраметилпиперазинийдихлори-да, который действует как катализатор [224]. Впоследствии он показал, что под действием водного раствора гидроксида натрия и ТЭБА из бензилхлорида и циклогексанола образуется смесь простых эфиров. Однако работа Жаррусса не привлекла внимания химиков. Точно так же и ранние работы по МФК-алки-лированию фенола и бензилового спирта замещенными аллилхлоридами в присутствии системы КОН/четвертичные аммониевые хлориды остались погребенными в литературе [211, 225, 226]. Примерно в то же самое время в патентной литературе были описаны некоторые реакции, которые в широком понимании можно считать МФК-яроцессами, например получение эпоксидных смол из дифенол ОБ [186, 228] или из циануровой кислоты [186] и эпихлоргидрина в присутствии щелочей и аммониевых солей. [c.148]

    Выход этилсерной кислоты, полученной этим путем, никогда не превышал 20% от теории. Согласно некоторым данным, этиловый эфир хлорсульфоновой кислоты вступает в реакцию с этиловым эфиром [206а], что расходится с результатами более ранней работы [207а], и поэтому необходимы дополнительные исследования. При взаимодействии с алкоголятом натрия в эфирном растворе образуется продукт присоединения, строение которого [206], повидимому, не получило удовлетворительного объяснения. Продукт присоединения при нагревании его эфирного раствора или при прибавлении воды разлагается, давая диалкилсульфат, простой эфир, алкилсульфат натрия и сернокислый натрии. Найденные выходы различных соединений указаны в табл. 6. [c.40]

    Побочные реакции и селективность процесса. При гидратации элефинов наряду с основной реакцией протекают олигомеризация элефина (получение низкомолекулярных полимеров) и образование простого эфира. Все они идут через промежуточную стадию иона карбония, что можно изобразить схемой  [c.186]

    Полную этерификацию высших полиолов осуществить довольно трудно объясняют это тем, что некоторые гидроксилы полиолов более устойчивы в этой реакции, или же пространственными затруднениями. Простые эфиры образуются под действием метил-или этилсульфатов, алкил- или аралкилхлорида и щелочи, метил-йодида и окиси серебра. Разработаны различные методы получения наиболее летучих триметилсилильных производных полиолов, применяемых при газохроматографическом анализе углеводоЕ и многоатомных спиртов [40]. При действии трифенилметилхло- [c.18]

    Получение бутиловых спиртов гидрированием масляных альдегидов. Сырые масляные альдегиды, полученные оксосинтезом, имеют сложный состав. Основными компонентами этой смеси являются масляный и изомасляный альдегиды, спирты, которые присутствуют в продукте реакции за счет гидрирования альдегидов в процессе карбонилирования пропилена, и растворитель (пентан-гексано-вая фракция, ароматические углеводороды, смесь бутилового и изобутилового спиртов). В меньших количествах присутствуют-кислоты, сложные эфиры (в частности, формиаты и ацетали), простые эфиры и продукты конденсации. Эти примеси гидрируются значительно хуже основных продуктов и многие из них оказывают отравляющее действие на катализатор. Некоторые примеси образуются во время декобальтизации продуктов синтеза. Поэтому принятый способ деко-бальтизации в значительной мере предопределяет выбор катализатора и условий гидрирования. [c.24]

    Поставщик этого специфического катализатора не известен, тем не менее мы сочли целесообразньпу рассмотреть реакцию указанного типа, так как она представляет собой метод получения ряда простых эфиров (как, например, динеопен-тилового). При проведении процесса с другими катализаторами дегидратации получить такие эфиры не удается, [c.61]

    Хотя реакция получения метанола кажется достаточно простой, все же в ходе реакций образуются небольшие количества побочных продуктов, которые необходимо удалять. Это низкокипящие продукты, и в первую очередь диметиловый эфир и формамид, и высококипящие спирты, например изопро-пилевый, изобутиловый и т.д. [c.229]

    Наиболее широко применяется реакция получения простых эфиров целлюлозы путем взаимодействия алкалицеллюлозы с этерифицирующим агентом в гетерогенных условиях. Эта реакция протекает тем полнее, чем больше соотношение NaOH ( gHioOj) в алкалицеллюлозе и чем меньше в ней содержится воды. [c.309]

    Пиролиз сложных и простых эфиров арилметилкарбинолов и [ -арилэтиловых спиртов для получения винильных производных ароматических углеводородов менее удобен, чем дегидратация соответствующих спиртов, и поэтому он применяется редко. Этот метод основан на реакции [c.15]

    Ф еноксистирол. Полученную смесь 4-феноксифенилметилкар-бинола и его простого эфира (или чистый эфир) пропускают через трубку из стекла пирекс, наполненную активированной окисью алюминия и нагретую до 325—450°. Продукты реакции фракционируют в вакууме выход фрак- [c.93]

    В автоклав емкостью 0,5 л помещалось 100 г винилово-го эфира (винилэтилового, винилизопропилового, винилбутилового) и 25 г катализатора, иодавался водород (120— 140 атм), после чего автоклав вращался. Гидрирование идет энергично, температура с 18—20° поднимается до 30—32°, а затем через полчаса начинает падать, но все же она выше комнатной а 3—4° и остается такой до конца процесса, который длится 2—3 час. Гидрирование ирерывали после установления в автоклаве постоянного давления. Продукт реакции лодвергался перегонке. Выход простых эфиров достигает 94—95%. Простые эфиры, полученные гидрированием виниловых эфиров, являются весьма чистыми соединениями. Их точки кипения несколько ниже точек кипения соответствующих виниловых эфиров. [c.24]

    Основность феноксид-иона значительно ниже основности ал-коксид-иона это подтверждается тем, что выходы смешанных жирноароматических простых эфиров по реакции Уильямсона (см. выше) гораздо больше, чем выходы простых эфиров алифатического ряда, г(ри получении которых значительная часть алкилгалогенида превращается в алкен  [c.105]

    При получении реактива Гриньяра в диэтиловом чфире можно не 0насат1)ся его последующею окислен[1я пары кипящею эфира практически исключают контакт кислорода воздуха с образовавшимся магнииорганическим соединением. Если же используют более высококипящий простой эфир, то реакцию алкилгалогенида с мгн нием следует проводить в токе инертного газа. [c.301]

chem21.info

Эфиры простые

Навигация:DJVU Библиотека PhotogalleryБрокгауз и Ефронknolik.com Статистика:

Значение слова "Эфиры простые" в Энциклопедическом словаре Брокгауза и Ефрона

Эфиры простые(хим.). — Простыми Э. называются соединения спиртов между собой, происходящие путем выделения воды за счет водных остатков двух участвующих в реакции частиц спирта, которые могут быть одинаковы или различны, например:

2С 2H5.ОН = (C2H5)2O + h3O,

СН 3.ОН + C 2H5.ОН = СН 3.О.C 2H5.

В первом случае Э. называются простыми в тесном смысле слова, во втором — смешанными. Состав предельных эфиров выражается той же общей формулой, как и для спиртов, например: (С n Н 2n + 2 O), но в спиртах кислородный атом входит в состав гидроксила, т. е. связан лишь с одним углеводородным остатком, а в эфирах — с двумя. Вильямсон (1848 г.) так формулировал эти отношения: "алкоголь представляет собой воду, в которой половина водорода замещена углеводородом, а эфир — воду, в которой оба атома водорода замещены углеводородом: ". Основанием для принятого строения Э. служит открытая Вильямсоном реакция их получения при действии алкоголятов на йодистые алкилы. Тогда как одноатомные спирты при образовании Э. должны участвовать всегда в количестве двух частиц и могут образовать лишь одно соединение, спирты многоатомные представляют гораздо большее число возможных комбинаций и форм. Здесь, во-первых, в реакции образования Э. может принимать участие или один водный остаток многоатомного спирта, или же несколько; далее, выделение воды может происходить или из одной частицы спирта, или из двух, или из нескольких. Таковы, например, гликоли, для которых, кроме моноэфиров и диэфиров (например, СН 2 (ОН).СH 2.О.С 2H5 и C 2H5.О.СН 2.СН 2.О.C 2H5) существуют еще внутренние Э., так называемые окиси этиленных углеводородов (см. Окислы), и полиэтиленовые спирты. Еще больше комбинаций возможно для спиртов высшей атомности и для соединений двойственной функции, например для спиртокислот (см.). В общем, несмотря на все разнообразие форм, как способы образования Э., так и свойства, им присущие, являются повторением того, что известно для Э. одноатомных предельных спиртов, существующих в большом числе представителей и наиболее хорошо исследованных. Номенклатура сводится к обозначению их спиртовых остатков соответствующими прилагательными с прибавлением слова "Э.", например: (С 2 Н 5)2 О — этиловый Э., СН 3.О.С 2 Н 5 — метилэтиловый Э., — диэтиленовый Э. и т. д. Среди Э. одного и того же ряда возможны многочисленные случаи изомерии и метамерии (см. Изомерия), причем влияние строения очень характерно отражается на их физических свойствах (см. ниже).

Из способов получения простых Э. первой по времени и наиболее важной по практическим применениям реакцией является действие серной кислоты на спирты. Этим путем еще в XVI в. был получен этиловый Э. (см.), но теоретическое объяснение происходящего здесь процесса, над которым трудилось немало выдающихся ученых, было дано лишь в 1848 г. Вильямсоном. В малом виде эта реакция воспроизводится следующим образом: в колбу, соединенную с холодильником, помещают смесь серной кислоты и спирта, температуру которой измеряют опущенным в нее термометром. Нагрев смесь до 140—150° или немного ниже, приливают к ней по каплям чистый спирт, причем образующийся Э. отгоняется. Перегон взбалтывают с известковым молоком, сушат над хлористым кальцием и перегоняют. Способ этот далеко не общий (см. ниже). По Вильямсону реакция протекает в две фазы: сперва образуется эфирсерная кислота взятого спирта и выделяется вода:

1) С 2 Н 5.ОН + OH.SO 2.OH = C2H5.O.SO2.OH + h3O.

Затем, при дальнейшем действии спирта и нагревании, образуется простой Э., а серная кислота регенерируется;

2) С 2 Н 5.О.SO 2.ОН + С 2H5.ОН = (С 2H5)2 О + ОН.SО 2.ОН.

Доказательством такого именно хода реакции служит, по Вильямсону, образование смешанного Э., если, приготовив эфирсерную кислоту какого-нибудь одного спирта, во вторую фазу реакции ввести другой спирт:

С 2 Н 5.О.SО 2.ОН + С 5 Н 11.OH (изо) = С 2 Н 5.О.С 5 Н 11 + ОН.SО 2.ОН.

В конце реакции, когда место этилсерной кислоты заступает изоамилсерная, образуется простой изоамиловый Э. Важное значение, по данным Петера, имеет крепость серной кислоты. Лучше всего брать кислоту удельного веса 1,78, так как более крепкая действует как водоотнимающее средство, образуя этиленные углеводороды. Этим объясняется разногласие между Вильямсоном, с одной стороны, и Гутри, Нортоном и Прескоттом — с другой. Последние авторы утверждали даже, что невозможно получить при помощи серной кислоты Э. спирты, содержащие более С 3 в частице (Вильямсон получил, как сказано, смешанный Э. спирта C 5). По теории процесс этерификации посредством серной кислоты должен быть непрерывен. На деле, однако, он довольно скоро останавливается вследствие происходящих здесь побочных реакций, главным образом раскисления серной кислоты до сернистого газа. Прюнье предложил несколько иное толкование реакции. По его схеме образование простого Э. происходит вследствие взаимодействия со спиртом полного Э. серной кислоты, с одной стороны, и Э. сульфоновых кислот — с другой. Последние, по Прюнье, являются промежуточными продуктами реакций и образуют с избыточным спиртом простой эфир, отчасти распадаясь с выделением сернистого газа. Это обстоятельство, в связи с омылением эфирсерной кислоты выделяющейся водой, останавливает весь процесс по истечении известного времени. Прюнье не удалось выделить из реакционной смеси каких-либо определенных сульфокислот, вследствие чего его схема не отличается доказательностью. Неф полагает, что при нагревании смеси серной кислоты и спирта образующиеся сложные Э. серной кислоты диссоциируют на СН 3.СН< (этилиден) и Н 2 SО 4, благодаря чему при температуре 140—170° здесь могут происходить следующие три реакции: 1) образование Э. через присоединение избыточного спирта к этилидену, 2) образование этилена из этилидена путем перегруппировки и 3) образование альдегида, сернистого газа и воды при действии серной кислоты на этилиден:

СН 3.CH< + O.SO2Oh3 = Ch4.CH:O + SO2 + h3O.

Выделяющийся альдегид сейчас же обугливается H 2SO4. Первая реакция преобладает при более низкой температуре (130—140°) и при избытке спирта, последние две — выше 160° и в присутствии большого количества серной кислоты. Описанный способ получения простых Э. обыкновенно применяется лишь к первичным спиртам нормального строения. Во всех остальных случаях, главным образом при третичных спиртах, реакция преимущественно направляется в сторону образования непредельных углеводородов, особенно при употреблении слишком крепкой серной кислоты и в слишком большой концентрации. Однако, соблюдая эти условия, можно получить Э. и третичных спиртов (Мамонтов). Вместо легко раскисляющейся серной кислоты Крафт предложил брать ароматические сульфокислоты, как более стойкие и менее удерживающие воду вещества. Способ оперирования такой же, как и с серной кислотой: к расплавленной и нагретой до 135—145° сульфокислоте понемногу приливают спирт, причем образующийся эфир отгоняется. Реакция протекает, как и там, в две фазы: сперва образуется сложный Э. сульфокислоты, который с избытком спирта дает простой Э. и обратно кислоту:

1) C6H5.SO2.OH + C2H5.OH = С 6H5.SО 2.О.С 2H5 + h3 О,

2) C6H5.SO2.O.C2H5 + С 2H5.ОН = (С 2H5)2 O + С 6 Н 5.SО 2 ОН.

Это один из лучших способов получения Э. Большое значение имеет следующая реакция Вильямсона, являющаяся основанием для принятого строения Э. — действие галоидных алкилов на алкоголяты, например: C 2H5I + Ch4.ONa = C2H5.O.Ch4 + NaI. Способ применим тоже главным образом к первичным предельным спиртам, так как при вторичных и особенно при третичных спиртах замечается наступление побочных реакций (образование этиленных углеводородов). Во всяком случае для получения Э. из спиртов с высоким молекулярным весом этот путь самый удобный. Липперт рекомендует брать высшие первичные и вторичные спирты исключительно в виде алкоголятов; из галоидных алкилов йодюры (первичные) берутся лишь для первых членов ряда; с увеличением молекулярного веса их следует заменять бромюрами. Вообще, умеряя действие оснований и беря более прочные галоидные алкилы, например хлорюры, можно этим путем получить Э. даже третичных спиртов. В заключение остается упомянуть о многочисленных случаях образования Э. при дегидратации спиртов под влиянием высокой температуры и различных химических агентов. Так, при 7—8-часовом нагревании этилового спирта в запаянной трубке до 240° Рейнозо наблюдал образование Э. в присутствии галоидоводородных кислот, серной кислоты, некоторых галоидных и сернокислых металлов. Галоидоводород играет здесь, вероятно, такую же роль, как и серная кислота в процессе Вильямсона, т. е. образующийся в первую фазу реакции галоидный алкил реагирует с избытком спирта по равенству: C 2H5 Cl + С 2 Н 5.ОН = (С 2 Н 5)2 О + НСl. Для объяснения действия средних солей Рейнозо принимает, что при температуре реакции они отчасти распадаются с выделением свободных кислот. Такого рода дегидратация свойственна лишь первичным спиртам: вторичные и третичные дают этиленные углеводороды и воду (Волков). Простые Э. представляют собой бесцветные, легкоподвижные жидкости, кипящие ниже соответствующих спиртов, с приятным "эфирным" запахом, почти нерастворимые в воде, смешивающиеся со спиртом. Высшие Э. тверды, а первый член ряда — метиловый Э. — газ при обыкновенной температуре. Физические свойства Э. изучены очень подробно. В приводимых ниже таблицах (Dobriner, "Lieb. Ann.", 243, 1 [1888]) приведены температуры кипения, удельные веса и удельные объемы простых Э., отвечающих предельным одноатомным спиртам нормального строения. Названия радикалов, входящих в состав Э., напечатаны сверху и слева.

I. Температуры кипения простых и смешанных эфиров.

  Метил Этил Пропил Бутил Гептил Октил
Метил 23,6° 10,8° 38,9° 70,3° 149,8° 173,0°
Этил 34,9° 63,6° 91,4° 166,6° 189,2°
Пропил 90,7° 117,1° 187,6° 207,0°
Бутил 140,9° 205,7° 225,7°
Гептил 261,9° 278,8°
Октил 291,7°
Из таблицы I видно, что температура кипения метамерных Э. понижается по мере уменьшения разницы в содержании углерода обоими остатками и делается наименьшей у Э. с одинаковыми радикалами. Точно такие же отношения существуют между удельными весами метамеров: наибольшим удельным весом обладают наиболее высоко кипящие Э., наименьшим — низко кипящие, как видно из таблицы II.

II. Удельные веса простых и смешанных Э. при 0°.

  Этил Пропил Бутил Гептил Октил
Метил 0,7252 0,7471 0,7635 0,7953 0,8014
Этил 0,7365 0,7545 0,7680 0,7949 0,8008
Пропил 0,7633 0,7773 0,7987 0,8039
Бутил 0,7865 0,8023 0,8069
Гептил 0,8152 0,8182
Октил 0,8203
В таблице III приведены удельные объемы Э. при температуре кипения, подчиняющиеся тем же правильностям, как и удельные веса, но в обратном смысле:

III. Удельные объемы простых и смешанных Э. при температуре кипения.

  Этил Пропил Бутил Гептил Октил
Метил 84,0 105,1 127,2 194,6 219,8
Этил 106,1 127,8 150,1 220,8 246,7
Пропил 150,9 174,4 245,6 272,4
Бутил 197,3 271,3 295,7
Гептил 352,7 376,8
Октил 403,6
Простые Э., в отличие от сложных, характеризуются своей значительной стойкостью по отношению к реакциям гидратации. Вода, растворы щелочей и кислот при обыкновенной температуре не переводят их обратно в спирты. Для этого приходится прибегать к действию галоидоводородных кислот, главным образом к сухому йодистому водороду. С последним, как показал Сильва, реакция идет уже при температуре 0—4°, сопровождаясь распадением простого Э. на йодюр спирта менее богатого углеродом и на спирт с большим содержанием углерода, например: СН 3.О.С 2 Н 5 + HI = Ch4 I + С 2 Н 5.ОН. Подробные исследования Липперта вполне подтвердили и распространили правило Сильвы, которое получило такую формулировку: 1) "При расщеплении смешанного Э. галоидоводородом на спирт и галоидный алкил, галоид соединяется с меньшим из двух радикалов. 2) При двух- и трехатомных Э. (например, ацеталь, ортомуравьиный Э.) расщепление происходит таким образом, что галоид всегда соединяется с одноатомным радикалом". Для реакции йодистого водорода с Э., заключающими изомерные радикалы, Липперт установил следующие правильности: "при действии йодистого водорода на смешанный Э., радикалы которого изомерны друг другу, галоид соединяется с радикалом, происходящим от нормального углеводорода. Если оба радикала происходят от того же самого углеводорода, то галоид, насколько простираются сделанные до настоящего времени наблюдения, отходит к радикалу первичного строения". Существуют, однако, исключения из этого правила: сам Липперт получил в качестве продуктов распадения пропилизопропилового Э. йодистый изопропил (вместо йодистого пропила). Так же Э. третичных спиртов образуют при распаде исключительно третичные йодюры (Мамонтов). Гидратация некоторых Э. происходит при нагревании их в трубке при 170° с 2 % серной кислотой (Эльтеков). В Э. сильно развита способность к металептическому замещению водорода хлором. Реакция протекает настолько энергично, что первоначально ее приходится вести в темноте и при охлаждении. Порядок замещения весьма своеобразен: например, при хлорировании обыкновенного Э. первым продуктом является монохлорэфир строения СН 3.СНСl.О.С 2 Н 5; второй, третий и четвертый атомы хлора замещают водород метильной группы в том же углеводородном остатке, где и первый, образуя тетрахлорэфир CCl 3.CHCl.O.C2H5; наконец, пятый атом хлора замещает последний водород там же. Действие галоида на вторую этильную группу начинается лишь при работе на прямом солнечном свету и в конце концов приводит к продукту полного замещения — перхлорэфиру, CCl 5.O.CCl5. В последнее время обращено внимание на способность Э. давать разнообразные продукты присоединения. Раньше такого рода продукты относились к категории так называемых молекулярных соединений, но теперь, с возникновением "оксониевой теории", их считают производными четырехатомного кислорода (Байер и Виллигер). Таково, например, соединение метилового Э. с хлористым водородом, описанное еще Фриделем, , кипящее с разложением при —2°, соединения с комплексными минеральными кислотами и многие др. Приводим свойства некоторых отдельных представителей простых Э. Метиловый Э. ([CH 3]2 O) получается при нагревании до 140° смеси 2 частей крепкой серной кислоты и 1,3 частей метилового спирта. Выделяющийся газ поглощают крепкой серной кислотой, которая растворяет около 600 объемов его. При выливании по каплям такого раствора в воду получается равномерная струя метилового Э. Температура кипения —23,65°. Хлорметиловый Э. (CH 2 Cl.О.СН 3), температура кипения 59,5°, разлагается водой на HCl, метиловый спирт и триоксиметилен. Этиловый Э. — см. Эфир серный. Свойства средних членов предельного ряда даны в таблицах. Цетиловый Э. ([C 16h43]2 O), листочки с температурой плавления 55°, температура кипения 300°. Этилцетиловый Э. (С 16 Н 33.O.С 2H5), листочки с температурой плавления 20°. Аллиловый Э. ([С 3 Н 5]2 О), температура кипения 94,3°. Из полных простых Э. гликолей известен диэтиленовый Э. , температура плавления + 9°, температура кипения 102°. Смешивается с водой. Д. Монастырский.

Статья про слово "Эфиры простые" в Энциклопедическом словаре Брокгауза и Ефрона была прочитана 1570 раз

Брокгауз и Ефрон, избраное

be.sci-lib.com

Начало работы: testnet или private? Как получить тестовый эфир? [Дубликат]

Defenitley testnet - это лучшая вещь для работы и разработки, вот шаги, чтобы установить все, что вам нужно, запустить geth miner и легко получить простые эфиры:

Установите eth && geth

Следуйте инструкциям, приведенным в этом учебном пособии, чтобы включить eth и geth (я рекомендую установить их оба): https://ethereum.org/cli Установить solc

Следуйте инструкциям на компиляторе sol здесь: https://ethereum.org/greeter Создайте блок-цепочку testnet

Создайте новую папку, в которой будет установлена ​​тестовая сеть с файлом genesis.json с этим контентом:

{ "nonce": "0xdeadbeefdeadbeef", "timestamp": "0x0", "parentHash": "0x0000000000000000000000000000000000000000000000000000000000000000", "extraData": "0x0", "gasLimit": "0x8000000", "difficulty": "0x400", "mixhash": "0x0000000000000000000000000000000000000000000000000000000000000000", "coinbase": "0x3333333333333333333333333333333333333333", "alloc": { } }

Подробнее о создании генезиса здесь: http://adeduke.com/2015/08/how-to-create-a-private-ethereum-chain/ Создать новую учетную запись && начать добычу

Перейдите в каталог приложения и запустите команду folowwing, изменив поля в соответствии с вашим каталогом тестовой сети и запустите ее.

geth --genesis [YOU TESTNET DIRECTORY]/genesis.json --datadir[YOU TESTNET DIRECTORY] --rpc --rpcaddr="0.0.0.0" --verbosity=2 --maxpeers=0 --rpccorsdomain="http://localhost:3000" console

Когда вы находитесь, нам нужно создать новую учетную запись и выбрать наш пароль:

Запустите personal.newAccount() и поместите новый пароль.

Создайте файл с именем password-testnet и поместите там пассив.

Теперь у нас есть учетная запись с паролем в файле, который мы можем запустить, чтобы запустить нашу тестовую сеть, измените каталог на следующую команду и запустите ее.

geth --genesis [YOUR TESTNET DIRECTORY]/genesis.json --datadir [YOUR TESTNET DIRECTORY] --rpc --rpcaddr="0.0.0.0" --verbosity=5 --maxpeers=0 --rpccorsdomain="http://localhost:3000" --nodiscover --unlock=0 --password="password-testnet" --mine

askentire.net